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Specific trade names and company products are mentioned to adequately specify the experimental procedure and equipment used.
Such identification does not imply recommendation or endorsement by the National Measurement Institute Australia, nor does it
imply that the products are necessarily the best available for the purpose.
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= Nanoparticle tracking analysis

LM10
(Nanosight, UK)

Microscope
Particles scatter the laser light,
which can be visualised in a l
basic (10X) microscope
objective
Particles to be viewed are _._._:"“:%:; ‘. _ R S TR e
suspended in liquid B e

Laser beam
(approx 50 um wide) /

Glass Metallised Surface
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Fast facts:

Nanoparticle tracking analysis

20 nm —2um

Size range (lower range is dependant on scattering properties and instrument
configuration: @ 638 nm, PSL ~ 70 nm, Au ~20 nm)

Measurand Diffusion length

Analysis principle

Brownian motion (Stokes-Einstein equation)

Key assumptions

Spherical particles, particle motion is in 2D

Concentration range

~1X108 particles per mL

Sample requirements

Fluid needs to be optically transparent

Pre-requisite
knowledge

Measurement temperature, viscosity of dispersant*
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Example results - NTA

Particle Size / Concentration Sample Video Frame

Particle Size

(100nm per division)

Particle Size / Relative Intensity Particle Size / Relative Intensity 3D plot
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Other Features — NTA

e Can measure particle number concentration (particles/mL)

e Can qualitatively differentiate between particles of different
composition based on scattering intensity

e Different systems with different laser wavelengths, camera
resolutions and temperature control are available

Limitations — NTA

e Strong dependence on operator through choice of settings for
imaging and analysis

e Limited statistical relevance
e Dilution
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Fast facts: DCS

. 5nm—10um
Size range _ _
(Rotation speed can be varied up to 24000 rpm)
Measurand Sedimentation time from injection to detection

Analysis principle

Stokes sedimentation

Key assumptions

Laminar, uniform flow

Concentration range

~ 50 pugLt - 1mglL?

Sample requirements

Sample must have a greater density than the fluid
gradient and have homogeneous composition.

Pre-requisite
knowledge

Particle density and the optical properties of
particle and gradient fluid (to convert measured
intensity distribution to weight and number
distributions)
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Example results — DCS
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Density distribution by weight, q; (ng)

Example results — DCS

n 6 sizes of Au:
Nominally 5, 10, 20, 30,
40 and 50 nm

Stokes diameter, x (nm)
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Limitations — DCS

Sample needs to have homogeneous composition, density,
porosity

Optical properties of sample need to be known

Calibration run must be performed before every measurement:
lack of applicable certified reference materials
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MBuoyant = Vol * (pparticle - pﬂuid)

o Particle in
Particle in light  4ense fluid Particle density
fluid “sinks” “floats” = fluid density
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frequency shift frequency shift frequency shift

AFFINITY
BIOSENSORS

Microchannel Resonator
Archimedes particle metrology

system

(Affinity Biosensors, USA)
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Images courtesy of Ken Babcock, Affinity Biosensors
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Fast facts: Microchannel resonator

60 nm —~5um
Size range Lower limit is dependant on particle density. Instrument
sensitivity is ~¥1 Femtogram.
Buoyant mass determined by a shift in the resonant
Measurand frequency of an oscillating cantilever with a buried

microfluidic channel

Analysis principle

Archimedes principle

Key assumptions

Spherical geometry, material homogeneity

Concentration range

1X107 — 1X10° particles per mL

Sample requirements

Sample should be free from
agglomerates/aggregates larger than 8 um

Pre-requisite
knowledge

Density of particle* and suspending fluid must be
known
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More Features — Microchannel resonator

Can measure ‘floaters’ — buoyant particles/bubbles
Measurement in aqueous and non-aqueous fluids
Can measure particle density

— Measure same particle in two fluids of different known

density (e.g. H,0 and D,0)

Can measure particle number concentration (particles/mL)

And for the metrologists....
— Simple model

— Based on frequency
measurements

Comparison of a trimodal Au sample
measured by the microchannel
resonator,

and

dynamic light scattering

—=— Micro-channel resonator

DCS

(1000 particles)

g

Normalized volume distribution (arb. units)
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Limitations — Microchannel resonator

Sensitivity is dependant on the channel size

— Smallest channel currently available: 2 x 2 um

— For Au, this translates to a minimum size of ~60 nm
Dilute suspensions required
Aggregated samples may clog the sensor

Sample needs to have homogeneous composition, density,
porosity
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Other techniques
improvements are happening all the time!
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A high-throughput label-free nanoparticle analyser

Jean-Luc Fraikin', Tambet Teesalu?, Christopher M. McKenney', Erkki Ruoslahti**
and Andrew N. Cleland™

Synthetic nanoparticles and genetically modified viruses are used in a range of applications, but high-throughput analytical
tools for the physical characterization of these objects are needed. Here we present a microfluidic analyser that detects
individual nanoparticles and characterizes complex, unlabelled nanoparticle suspensions. We demonstrate the detection,
concentration analysis and sizing of individual synthetic nanoparticles in a multicomponent mixture with sufficient
throughput to analyse 500,000 particles per second, We also report the rapid size and titre analysis of unlabelled
bacteriophage T7 in both salt sohtion and mouse blood plasma, using just ~1 x 107%1 of analyte. Unexpectedly, in the
native blood plasma we di ) S S - ) o o ) )
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Silver bullet for particle sizing?

As yet there is no single ideal characterisation technique
All techniques make assumptions
Different techniques measure different quantities

Characterising particles in-situ in complex matrices or in
concentrated slurries/suspensions is challenging

Complex particle systems need complex descriptors — what is ‘size’?

Use as many techniques as possible: you can never know too much
about your sample!
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