

Bacteria responsive poly(N-isopropyl acrylamide)s: The future of smart polymer biotechnology

Stephen Rimmer

Polymer and Biomaterials Chemistry Laboratories University of Sheffield, UK

Can we mimic biological "smartness"

binding is conformational (folding) change

Some consequences of branching

chain ends do not penetrate the coil

Branching effects end group availability.

Currently we have studied highly branched

poly(N-isopropyl acrylamide) (HB-PNIPAM)

Self-condensing RAFT copolymerisation

Carter, Hunt, Rimmer, Macromolecules 38, 4595, (2005)

Alternative route to HB-PNIPAM

Use a variant of the cross-linking termination route

R.M. England, S. Rimmer Chem. Commun., 46 5767 (2010)

Used to bind to a His tagged protein for protein purification

Peptide highly branched PNIPAM

Rimmer, Carter, Rutkaite, Haycock, Swanson Soft Matter 3 971 (2007)

Branching and the LCST

End groups and the LCST

Transfer of Human Dermal Fibroblasts Cells

COOH or imidazole end groups above LCST- particles enter cells

A clear alternative for delivery of charged therapeutics with function that does not require **challenging thermodynamics**.

Hopkins et al J. Mater. Chem. 17 4022 (2007); Soft Matter 5, 4928, (2009)

MTT cell viability after 48 hours Human dermal fibroblasts

28% branching-GMMA tips

Can we control the coil-to-globule transition with cells?

Are the perturbations on binding end groups sufficient to induce collapse?
Binding decreases the LCST

>In general ligand receptor interactions dominated by electrostatic interactions

= large change in solvation on binding

Chain collapsed-cell adhesive globule

Bacteria-binding polymers

Branched poly(NIPAM) - antibiotics @ chain ends

e.g. Vancomycin –
binds Gram+ve
(*S.aureus*)

•

«Red labelled bacteria

*****Polymer binds then collapses and bacteria aggregate

Is the effect temperature responsive?

5 + PBS 5 1.25 0 [Polymer] / mg ml⁻¹

S. aureus

e

HB-PNIPAM +*S. aureus*

S. aureus

HB-PNIPAM+P. aeruginosa

37 °C

4 °C

Preliminary detection of coil collapse

A quick test for chain collapse uses Ethidium Bromide

-responds to incorporation in desolvated PNIPAM

UV light

PNIPAM-		S.Aureus
Van in		in PBS
PBS	PNIPAM-	
	Van in PBS	
	with	
	S.aureus	

HB-PNIPAM-pmx with P. Aeroginosa: Gram-ve

37°C

4°C

37°C / 1h

HB-PNIPAM-pmx & P.aeruginosa

σ

Increasing polymer concentration

0

Increasing LPS concentration

Change in particle size with temperature

VAN membrane & P.aeruginosa

Ctrl. membrane & S.aureus

Ctrl. Membrane & P.aeruginosa

Tissue engineered skin infected with S. Aureus and treated with HB-PNIPAM attached to hydrogel membrane

2 x 1 hour applications of van-membrane

(a)Infection for 45 mins

b

2h

No treatment

(b)Infection 45mins

(c) 45 mins (d) 24 hours

Vo. bacteria visible per field (n=5) 8000 6000 4000 2000 n

□S.aureus/VAN membrane ■S.aureus/Ctrl membrane ■P.aeruginosa/VAN membrane

3h

d

Numbers of bac on membrane

(e)Infection for 24 hours

1h

Counting bacteria on the membranes: PMX-*P. aeruginosa*

Summary-we have several modes

*

- The desolvated chain is more adhesive to cells
- The cells aggregate because the physicochemical properties are now suitable to support adhesion
 - Cooling release the cells

Polymers desolvated on application Cells bind to particulate aggregates Cooling release the cells

Polymers desolvated on application
Phagocytosis of particulate aggregates

Acknowledgements

Richard England Sally Hopkins Joey Shepherd Prodiip Sarker Steve Carter Kathryn Swindells

Ian Douglas Sheila MacNeil Linda Swanson Nigel Fullwood

EPSRC, BBSRC, MOD