

Mesoporous Silica Functionalised Composite Bone Cement for Effective Delivery of Antibiotics

Jun 26-Jul 1, 2011

Shen Shoucang ¹
Shi Zhilong ², Leonard Chia ¹, Ng Wai Kiong ¹,
Koon Gee Neoh ², Reginald B.H. Tan ¹

1.Institute of Chemical and Engineering Science (ICES), A-STAR

2.Department of Chemical and Biomolecular Engineering, (NUS)

Function of Antibiotic-loaded Bonecement

- Fix the metal part
- Release antibiotic to protect surrounding tissue

Problem Faced

- ➤ "Numerous studies about its (antibiotic-loaded acrylic bone cement) pharmacokinetic properties have demonstrated that only a small part of the incorporated antibiotic amounts can be released"¹
- ➤ It is necessary to incorporate fillers to PMMA based bone cement without detriment of mechanical property
- ➤ "However, the ideal filler material and amount of filler are yet to be established."¹

² Konstantinos Anagnostakos, Jens Kelm, Review: Enhancement of Antibiotic Elution From Acrylic Bone Cement, Journal of Biomedical Materials Research Part B: Applied Biomaterials, J Biomed Mater Res Part B: Appl Biomater 90B: 467–475 (2009),

¹ Gladius Lewis, Review: Properties of Antibiotic-Loaded Acrylic Bone Cements for Use in Cemented Arthroplasties: A State-of-the-Art Review, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 89B: 558-574 (2009).

Mesoporous Silica Nanoparticles (MSN) as drug carriers/filler

- Large specific surface areas (~600 m²/g)
- Large pore volume (~1.0 cc/g)
- Uniform nanoporous channels

- Large drug loading in nano encapsulation
- ■The pores also provides diffusion channels for drug molecules to elute

Formulation Method-A: 2-step Procedure

Drug Release Profiles of Bone Cement

	MSN [wt.%]	Drug Loading [wt.%]	
A-1	0	3.40	
A-2	2.04	1.36	
A-3	4.08	2.72	
A-4	6.12	4.08	
A-5 8.15		5.44	
A-6	10.19	6.79	

Formulation Method-B: one-step Method

Drug Release Profiles of Bone Cement Prepared by Method B

	MSN [wt.%]	Drug Loading [wt.%]	
B-1	8.15	2.72	
B-2	5.44	2.72	
B-3	2.72	2.72	

*B-1 prepared by method-B exhibits best result for drug sustained release

Scheme of Drug Release System

GTMC-Bone Cement

Low Silica Concentration (<6%) High Silica Concentration (>6%)

* Particle-particle contact of MSN built effective diffusion network for drug molecules release from bone cement matrix

Effect of Particle Size of Mesoporous silica

Mechanical Properties: Bending

* Simplex-P is commercial bone cement.

1 GPa: 1000MPa

Mechanical Properties: Compression Strength

Antibacteria Test

Viable cell: Green

Nonviable: Red

Cytotoxicity Measurements

Other Fillers

- Carbon Nanotubes (CNT)
- Hydroxyapatite (HAP) nanorods/nanoparticles
- Al₂O₃ nanofibres

Drug Release from CNT formulated Bone Cement (SmartSet-HV)

sample	PMMA	MMA	CNT	GTMC
CNT10 nm	2.0 g	1 ml	5.35%	3.21%
CNT60-100	2.0 g	1 ml	5.35%	3.21%

Drug Release from Composite Bone Cement formulated with HAP Nanorods and Al₂O₃ nanofibers

Gentamicin: 4.85 wt%

Bending Test of HAP - PMMA Bone Cement

HAP formulated PMMA bone cement have much weaker mechanical property

Summary

- Our work incorporates mesoporous silica nanoparticles into bone cements as drug carriers to enable controlled release of antibiotics
- Compared to commercial antibiotics-loaded bone cement, our work achieves a breakthrough in terms of:
 - High drug release efficiency (70% vs 5%)
 - Sustained drug release (80 days vs 1 day)
- MSN formulated bone cement exhibited good antibacterial properties and retained the original mechanical strength of the bone cement: high application potenetial

Acknowledgements

Financial Support : A*STAR (Agency for Science, Technology and Research, Singapore

