

	Exam	ple: Impact o oduct's Critic	f Particle Size Engineering al Quality Attributes (CQA)
Product Feature	CQA	Particle Size	Impact on Product Performance
Safety	Content uniformity	Too large or too diverse	Variation in API uniformity of dose
		API size significantly different from excipients	Preferential segregation during processing & reduced dose uniformity
Efficacy	Dissolution behaviour	Too large	Reduced dissolution rate & reduced product bioavailability
Process al Need	Flow to design e	Too small ffective cryst	Poor flow, lower than ideal allisation processes to

UNIVERSITY OF LEEDS

iPR Institute of Proce	Extrinsic Sy ass Research and DevelopmenUser Interface	nthons: Graphical ce for SystSearch
Choose desired surface Select column t from a folder	Systematic Search Engine (SystSearch) Surface and probe Selection Search Parameters Set Surface User Defined Surface 0 0 0 0 1 1 5	
 Select solvent from a folder Click on Geometrical configuration info button Generates geometrical configuration information 	Set probe Set User Specified Solvent Molecule from following Paths D:/builds/visual_habitib_development/Fortran/readMDL/cmdint/s Geometrical Configuration Information	Contraction(on)(on)(on)(on)(on)(on)(on)(on)(on)(o
of probe (solvent) User can adjust search parameters accordingly 	Close Help	00000 0.75880 0.70400 -5.15780 00000 0.75480 0.75480 -5.75780 00000 0.75880 0.75880 -5.75780 00000 0.75880 0.75880 -5.75780 00000 0.75880 0.75880 -5.75780 00000 0.75980 -5.15870 -5.75780 00000 0.75980 -5.15870 -5.75780 00000 0.75980 -5.15870 -5.75780 0.75700 0.75980 -5.15870 -5.15870 0.75800 0.75980 -5.15870 -5.15870 0.75800 0.75980 -5.15870 -5.15870
	Geometrical Configuration Information of Solvent	*** The task point work work of the second sec

		~	-				
		Aspirin: Sc Tension as	olvent-Mec Function	liated Inte of (hkl) &	erfacial Solvent Type		
 Attachment energies modelled for crystal habit faces of aspirin Together with their recalculation through solvent binding calculations using grid-based modelling Example: predicted morphologies for water, ethanol & 38%/62% ethanol-water (mixed) solvents 							
Habit	Face	Slice	Solvent Dependant Attachment				
Plane	Multiplicity	Thickness	Energy				
/ (hkl)		/Å	/ kcal mole ⁻¹				
			Water	Ethanol	Ethanol/Water		
(100)	2	11.4	0.27	0.37	0.20		
(002)	2	5.66	3.64	9.97	1.19		
(011)	4	5.69	11.75	12.94	11.90		
Grid-	Grid-based modelling methodology enables morphology prediction as function of crystallising solvent						

		IPR	2D ncess Research and	Com Developmer Ketor	batibility of Excipients of profen from DSC Study*		
Table 1 Peak temperat	ure and enth	alpy values	of ketoprofen af	ter co-mixing with	Peak MP temperature of		
Excipient	Peak temperature (°C)			Knewdod	ketoprofen 95.8º C		
	mixture	mixture	mixture	mixture			
Corn starch	92.6	80.0	03.2	91.8	 If mixture has peak 		
Arabic gum	90.9	87.7	87.1	87.3	temperature < 95.8°C.		
Natrosol	91.4	89.4	90.3	89.4			
Methocel	93.5	90.5	92.0	- Girler	excipient is compatible		
Avicel	92.8	90.4	92.0	92.3			
Veegum	93.6	92.1	92.7	93.1	Table shows all excinients		
Aerosil	95.1	93.4	94 5	2.0	· Table Shows all excipients		
Lactose	95.7	93.3	95.3	95.6	are compatible with		
Glucose	95.4	93.7	95.2	95.2	kotonrofon		
Mannitol	95.6	95.6	94.9	95.2	ketoproten		
Sorbitol	94.8	93.3	93.8	93.1			
PVP K30		11		- C	 Peak temperatures are very 		
PVPP	88.0	-	85.2	_			
PEG 6000	1014		- A		close & therefore difficult to		
Palmitic acid	85,3	84.3	84,6	84.6	rank compatibility of		
Stearic acid	87.6	86.6	87.9	87.5			

	B 8	UD Dis	on BUD stributio	D vs FP on of Co	on FP – A phesive In	Analysis teractio	of Averag on Energy
	FD FD	r .		-	¥ =	98000 - 19700 -	• 🔸
FP on FP Faces Minimum Energy		Faces	Minimum Energy	/ 1000- (00	0) FP 2) BLD	49000 - 40000 - 39000 -	
(2.0.0)	(kcal/mol)	(0,0,0)	(kcal/mol)	g 10002-		- unter -	
(200)	-12.900	(002)	-8.693	10000-	More negative p	eak - stronger inte	raction
(101)	-13.224	(0 1 1)	-9.268	9000 -	//	1000	
(011)	-10.605	(110)	-11.111			8000-	
Average (over 4 faces)	-11.513		-9.955	Mode of	interaction energy	from distributio	nation Every or less prominent trace (kallind)
Мо	ore negative – stron	ger intera	ction	on slow show FF	er growing surfaces agglomerates stro	s (left) & faster ingly than BUD	growing surfaces (rig
	from low to high	d d	egree of de-agg ers deduced fro	domeration (D. om dry dispers	A _{max}) and critical pri ion laser diffraction.	mary pressure (CPP) of the pow-
ohesivity as follows:			Powder	R ²	DA ₅₀ (Bar)	DAmax	CPP (Bar)
B < Bud = LH300 < BDP <		<	RDP	0.9990	0.44	1.11	2.5
r = 10f <	SA.		Bud	0.9995	0.32	1.08	2.0
		 C 	FP	0.9049	1.15	1.13	3.0ª
			LH300	0.9997	0.23	1.06	2.0

Mechanical Deformation of Pharmaceutical Crystals: Key Concepts for Direct Compression Highly anisotropic molecular & • crystallographic structures □ Complex molecular shape □ Reduced symmetry crystal structures Weak intermolecular forces giving rise to Low elastic moduli, hence soft materials Slip planes for plastic deformation • □ Characterised by low surface energy & rugosity Plastic deformation restricted by Low multiplicity of slip planes & Burgers' vector Limited combinations of these to create active slip systems Fracture behaviour depends on balance between

Potential: selecting solid forms with good mechanical properties for formulation by direct compression

