Characterisation of Complex Organic Materials – New Insights using Molecular Sorption Probes

Dr. Daryl R. Williams

Surfaces and Particle Engineering Laboratory Department of Chemical Engineering Imperial College London

Complex Organic Materials

- Many of the real world materials developed and manufactured by industry for society are complex in terms of the chemical, morphological, structural, compositional and physically properties. Today we will consider solids or semi-solid materials
- Classes of complex materials include:
 - Agrichemicals
 - Pharmaceuticals
 - Biopharmaceuticals
 - Foods
 - Freeze and spray dried products
 - Personal care products
 - Biomaterials
 - Advanced composites
 - Adsorbents
 - Building materials

Moisture and Complex Organic Materials

What can be the effects of too little or too much water in a complex organic material?

- Potato crisps loose their crispiness
 Water decreases T_g of amorphous glass solids→rubbery
- Crystalline pharmaceutical hydrates become dehydrated solids Thermodynamic stability is compromised by low %RH's
- Proteins can loose their biological activity Proteins denature at low %RH's
- Freeze dried powders transform into liquids

Amorphous solids and deliquesce forming solutions

- Free flowing powders turn into rigid/solid cakes
 Amorphous solids can crystallise at high moisture contents
- Dry powders aerosols do not disperse

Particles adhere to each other or packaging

Characterization of Solids

- EM Radiation as a Probe
 - Spectroscopy eg Raman, IR
 - X-Ray Diffraction,NMR
 - Analytical and structural information
- Thermal Energy as a Probe
 - Calorimetry eg DCS, TGA
 - Thermodynamic information on solid
- Molecule as a Probe
 - Sorption techniques eg DVS, IGC
 - Thermodynamic and chemical information on vapour-solid interaction

Molecules as a Probe of Solids

Molecules as a Probe

Chemical Interactions

IGC, DVS, Wetting, Chemisorption analyzers

• Physical Structure (surface area, pore size, density etc.)

DVS, IGC, Volumetric sorption (i.e. BET analyzers), Chemisorption, Pycnometer

Thermodynamic Information

IGC, DVS, Thermal Analysis Methods

How do we study these moisture dependent behaviour of solid state materials?

Thermogramimetric Analysis

Dynamic Vapor Sorption

TGA	Method Name	DVS
Gravimetric	Principle	Gravimetric
~5mg	Sample Size	~10mg
Temperature	Primary Variable	% RH
Usually Ramp	Operational Mode	Step and Ramp
Thermal Perturbation	Core Data	Moisture Partitioning
1-4 Hours	Run Time	24 Hours
-200C to 400C	Measurement Range	0 to 100%RH

Dynamic Vapour Sorption

Dynamic Vapour Sorption

DVS Experimental Methods

 Traditional approach is a series of steps, each conducted at constant T and %RH with mass monitored as function of time. Output is isotherm.

Time

Time

• Alternate approach is %RH ramp, comparable to a TGA's T ramp experiment

DVS Typical Kinetics Data

Moisture sorption behavior of rice starch at 25 °C- 2 cycle experiment London 11

Water Sorption Isotherm

London 12

Water Sorption Isotherm for Hydrophobic Powder

- ~150 mg of material
- Higher uptake on smaller particles → Higher surface area

Water Sorption Isotherm for Hydrophillic Polymer

Water Sorption Isotherm Plot for Poly vinyl pyrrolidone

DVS-Microscope Accessory

DVS-Microscope Accessory

London 16

DVS-Microscope Accessory

Maltodextrin - 0% RH

Maltodextrin – 95% RH, 30 minutes

Maltodextrin - 95% RH, 0 minutes

Maltodextrin – 95% RH, 50 minutes Imperial College London

Amorphous Lactose

Amorphous Lactose

T, RH_{g:} RH versus Ramping Rate

Critical T,RH_g = 30% +/- 1% RH at 25 °C

DVS-Raman Accessory

- Raman spectroscopy is the measurement & detection of the wavelength and intensity of inelastically scattered light from molecules. When electromagnetic radiation passes through matter, most of the radiation continues in its original direction but a small fraction is scattered.
- 2. <u>Rayleigh scattering</u>: Light that is scattered at the same wavelength as the incoming light.
- **3.** <u>Raman scattering</u>: Light that is scattered due to vibrations in molecules or optical phonons in solids.
- The majority of scattered light is elastic and only one in 10⁶ optical photons are scattered at frequencies different to the incident light – This is the weaker Raman scattered light.

Step Data for Spray Dried Lactose

Amorphous versus Crystalline Salbutamol Sulphate

a)

Figure 5. DVS water sorption at 25 °C on re-crystallized a) and spray-dried b) Salbutamol Sulphate

b)

Ethanol vapor induced polymorph conversion $\delta \rightarrow \beta$ mannitol

Figure 4. DVS a) ethanol at 95%P/P₀ at 45°C and b) Raman spectra taken at 2-hour intervals for δ D-mannitol.

Carbamazepine Acetone Solvate: Desolvation Kinetics at 30C

The Future for DVS

- Multi-component gas-vapour mixtures
 - BET of a hydrate
 - Competitive adsorption
- More Fibre optic spectroscopy- IR, NIR
- Smaller samples, faster analysis eg a few hours
- Advanced modelling of isotherms for understanding sorption parameters from polymer solution theory eg χ
- True high throughput sampling

Conclusion

•Water Sorption in organic materials can be a complex phenomena

•DVS data describes physical, morphological and chemical state of the materials, including recrystallisation and amorphous collapse events

•Raman spectroscopy and video images support the comprehensive understanding of DVS sorption data

•DVS information not often attainable using any other approach

Thank You

Verentas Model of Solute-Polymer Dissolution

Does the BET model work for Water Sorption in Amorphous Solids?

- Define "Work"
- Can we fit data to model- YES
- But so to do many other models eg Young and Nelson
- Does the model provide a physical insight into the sorption process? NO
- Does that mean the BET model has no use, certainly not.

Imperial College

london

• Do better models exist.....

Water Sorption Keratin Fibres 25C

DVS Isotherm Plot for Yak fibre at 25°C

The Water Sorption Isotherm

Glass Transition Temperatures and Adsorption/Sorption

Amorphous-Glassy Solid

T <Tg

Surface and local bulk adsorption

Fast kinetics, low uptake levels

Amorphous-Rubbery Solid

T >Tg

Deep bulk sorption

Slower kinetics, medium to high uptake levels

Crystalline No Tg Surface adsorption

Very fast kinetics, very low uptake levels

Collapse RH versus Ramping Rate

Critical Collapse RH = 58% RH at 25 °C

Sorption behaviour is Complex

- Solute uptake levels of 0.02% to 60%
- Isotherm shapes can vary widely
- Sorption kinetics : a few minutes to a few days
- Solutes- water to hydrocarbons
- Substrates
- Inorganic or organic
- Glassy
- Crystalline
- Porous
- Reactive
- Combinations of all of the above
- No one theory can account for all of these !!
- What about the BET model!

0 to 90% RH for Different Ramping Rates

Vrentas' model: Water Sorption in Keratin

Example: ALF A (Example Anhydrate Drug)

Adsorption Cycle 1

Desorption Cycle 1

