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Research focus
• Inorganic silicon based materials (e.g. geopolymers)
• Physical chemistry of colloids
• Advanced organic materials for organic electronics, 

bioelectronics, photonics and sensors
– development of new materials (phtalocyanines, diketopyrrolo-

pyrroles, pi-conjugated polymers)
– their complex characterization with focus on stability, processability, 

optical and electrical properties
– deposition of multilayered thin organic systems for broad range of 

applications such organic photovoltaics, sensors, organic photonic 
devices, etc.



• Low molecular materials for photonic application  - DPPs as an 
example

• Preparation of soluble materials
• Influence of different substitutions 
• Thin film morphology and properties
• Applications

– Photonics
– Sensors
– Photovoltaic textiles



One the materials of our interest are small molecular 
materials called DPPs
• exceptional high thermal and photo stability 
• high melting point
• basic molecule extraordinarily bright, stable and 

resistant to ultraviolet light and extremes of heat 
and cold

Pigment Red 254, 
Ciba, Switzerland

R1 ‐ R4 = H:

3,6‐diphenyl‐2,5‐dihydro‐
pyrrolo[3,4‐c]pyrrole‐1,4 dione

• Pi-conjugated molecule – promising optical and 
electrical properties (high absorption coefficient, 
high fluorescence quantum yield )

• The research is driven by cooperation with 
industrial producer capable of mass production, 
some materials are currently soled as pigments



• Modification of the molecule by different substitutions to reach desired 
optical/electrical/sensing properties (based on quantum chemical 
calculation, which helps us to predict some properties)

• Modification of the solubility: unsoluble derivatives (nanoparticles), 
soluble derivatives, latent pigments

• Developement of nanoformulations for thin layer deposition (inkjet 
printing, microdispenzing printing, screen printing, electrophoretic 
deposition)

• More than 80 derivatives were prepared and characterized, many of them 
reported for the first time
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The basic DPP core is perfectly planar
Reason of DPP insolubility is the existence of H-bonds between the –NH group 
and oxygen and π-π electron overlap in the solid state 

Therefoere modified solubility can be achieved either through N-substitution 
and/or disruption of molecular planarity.
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Reason of DPP insolubility is the existence of H-bonds between the –NH group and oxygen because the
basic DPP core is perfectly planar and p–p electron overlap occurs in the solid state 

Therefoere modified solubility can be achieved either through N-substitution and/or disruption of
molecular planarity.

The disruption of molecular planarity was confirmed by quantum chemical calculation
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• Nanoparticles, clustersUnsoluble
derivatives

• Symetrically and 
unsymetrically substituted 
by different groups; polar 
and organic solvents

Soluble 
derivatives

• Irreversible change from 
soluble to unsoluble
material

Latent 
derivatives

HN

O

NH

O

HO3S

SO3H

HN

O

NH

O

O

O

NH NH

N

NC

Vala, M.; Weiter, M. et al., Journal of Fluorescence 2008, 18, 1181
Luňák Jr, S.; Vyňuchal, J.; Vala, M. et al. Dyes and Pigments 2009, 82, 102
Vala, M.; Vyňuchal, J.; Toman, P.; Weiter, M.; Luňák Jr, S. Dyes and Pigments 2010, 84, 176
Luňák Jr, S.; Vala, M. ; Vyňuchal, J. , Weiter, M . Dyes and Pigments 2011, 91, 269



Thermogravimetric analyses results. 
The onset1 suggests the temperature of evaporation,
the onset2 indicates possible beginning of degradation.

TGA for the DPP-alkyl 
derivate in the nitrogen
and oxygen atmosphere.

David, J.,  Weiter, M. et al. Dyes and Pigments 2011, 89, 137



 
The Influence of 
N-substitution on 
optical spectra

• insertion of an alkyl group decreases molar 
absorption coefficient (hypochromic shift) 

• simultaneously the longer wavelength maximum is 
shifted towards higher energy region (hypsochromic)

• the vibration structure is less pronounced

This is caused by torsion 
between pyrrolinone
central part and phenyl 
adjacent to the alkyl group 
and consequently, is caused 
by loss of molecule 
planarity which is in turn
responsible for loss of 
effective conjugation.

Vala, M.; Weiter, M. et al., Journal of Fluorescence 2008, 18, 1181
Luňák Jr, S.; Vala, M. ; Vyňuchal, J. , Weiter, M . Dyes and Pigments 2011, 91, 269



The central part 
composed of H-
chromophores
behaves as an 
electron-accepting 
group.

Vala, M.; Vyňuchal, J.; Toman, P.; Weiter, M.; Luňák Jr, S. Dyes and Pigments 2010, 84, 176
Luňák Jr, S.; Vala, M. ; Vyňuchal, J. , Weiter, M . Dyes and Pigments 2011, 91, 269

The Influence
of electron-

donors

• Increase of the molar absorption coeficient of the 
parent compound I accompanied with strong 
bathochromic shift (up to 55 nm)

• This behaviour implies that charge separation occurs 
via electron delocalization leading to creation of 
permanent dipole moment.



This is caused by torsion 
between pyrrolinone
central part and phenyl 
adjacent to the alkyl group 
and consequently, is caused 
by loss of molecule 
planarity which is in turn
responsible for loss of 
effective conjugation.

 The Influence of 
electron-
acceptors

•The introduction of the electron-acceptors did not caused 
increase of absorption

•This is further evidence for the electron-accepting 
character of the central part. 

•For the alkylated derivatives we observed hypso- and 
hypochromic shift with the loss of vibration structure again.

Vala, M.; Vyňuchal, J.; Toman, P.; Weiter, M.; Luňák Jr, S. Dyes and Pigments 2010, 84, 176
Luňák Jr, S.; Vala, M. ; Vyňuchal, J. , Weiter, M . Dyes and Pigments 2011, 91, 269
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Molecule TPF
(nm)

TPA
(GM)a

 (532 nm)
(dm-3 mol-1 cm-1)

TPE
(GM)a

VI 520 2,1±0,4 320 1,7±0,3
VII 555 2,4±0,5 3500 1,7±0,3
VIII 594 1400±300 26000 170±30
IX 598 44±9 45000 20±4
X 650 9.3±1.5 44000 0.093±0.029
XI 595 1100±200 41500 490±100
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TPA is the simultaneous absorption of two photons. 
Applications in Imaging methods in medical
diagnostics or in Photodynamic therapy (if the 
molecule posses triplet quantum yield).
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ASE or superluminescence is light, produced by 
spontaneous emission, that has been optically 
amplified by the process of stimulated emission in a 
gain medium. DPP has to be mixed with polymers 
(PMMA, PS) to create nanostrucured photonic layers. 

Compound λABS 
(nm) 

λEm 
(nm) 

Eth 
(kW/cm2)

λFl (nm) λASE-CE 
(nm) 

ΦFL 

U29 384 601 257,833 595 631 0.41 
U50 398 595 1008,890 567 579 0.12 
U51 537 601 298,033 583 612 0.45 
U65 404 606 1025,073 574 594 x 
U12 301 533 1095,674 525 558 0.77 
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Organic Field Effect Transistors based on different derivatives of 
DPP were prepared 

From the OFET characteristics the hole mobility in
range from 1×10-4 to 1×10-9 cm2s-1V-1 were evaluated
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Some derivatives exhibit also electron conductivity with electron
mobility range from 1×10-6 to 1×10-8 cm2s-1V-1

DPP derivatives allow us to prepare both p-type and n-type organic 
semiconductors
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Family of some DPP analogues with 
pyridyl group can be used for 
construction of hydrogen sensor wich is 
sensitive to hydrogen. 
To reach this goal it is necessary to 
prepare some nanostructured layer 
with DPP and Palladium which enable 
the dissociation of the hydrogen.
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FP7-NMP-SME 
Developement of photovoltaic textiles
based on novel fibres
www.dephotex.com





DPP based materials enable us to create 
the diverse electrical and optical 
components or subsystems needed for 
tomorrow's electronics applications: 
 optical devices and components
 organic field effect transistors
 organic light emmiting diodes
 organic solar cells
 humidity and hydrogen sensors
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