TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG

The University of Resources. Since 1765.

Institute of Mechanical Process Engineering and Mineral Processing

Nanoparticles in Organic Solvents with Polymers

Stability and Consequences Upon Material Synthesis Through Spray Drying

Martin Rudolph, Urs A. Peuker

German Research Foundation project: **PE1160/7-1**

- 1) Motivation
- 2) Solution Method
- 3) Preliminary Investigations
- 4) Theory of Nanoparticle Interactions
- 5) Experiments Stability
 - a) Destabilization with non-adsorbing PMMA, PC, PS
 - b) Stabilization with adsorbing PVB
- 6) Summary and Conclusion

 Synthesis of highly filled polymer nanoparticle composites ($\varphi_{Nano} > 10 \%$)

sorptive Bioseparation

Hickstein, B., Peuker, U.A. J Appl Poly Sci, 112, 2366

June 29th 2011 NanoFormulation 2011

• Synthesis of highly filled polymer nanoparticle composites ($\varphi_{Nano} > 10$ %)

- 1 Motivation
- Synthesis of highly filled polymer nanoparticle composites ($\varphi_{Nano} > 10$ %)
- Overcoming problem of dispersing (deagglomeration + mixing)

June 29th 2011 NanoFormulation 2011

- 1 Motivation
- Synthesis of highly filled polymer nanoparticle composites ($\varphi_{Nano} > 10$ %)
- Overcoming problem of dispersing (deagglomeration + mixing)
- We present an alternative modular process with the solution and spray drying method

1) Motivation

2) Solution Method

- 3) Preliminary Investigations
- 4) Theory of Nanoparticle Interactions
- 5) Experiments Stability
 - a) Destabilization with non-adsorbing PMMA, PC, PS
 - b) Stabilization with adsorbing PVB
- 6) Summary and Conclusion

June 29th 2011 NanoFormulation 2011

2 Solution Method

Polymers

- Poly(methyl methacrylate)
- Poly(vinyl butyral)
- Poly(bisphenol A carbonate)

Nanoparticles

- Fe₃O₄ magnetite, superparamagnetic
- Solvent(s)
 - Dichloromethane
 - Ethyl Acetate

Surfactants

carboxylic acids (C14 - C18)

2 Solution Method

1) Motivation

- 2) Solution Method
- 3) Preliminary Investigations
- 4) Theory of Nanoparticle Interactions
- 5) Experiments Stability
 - a) Destabilization with non-adsorbing PMMA, PC, PS
 - b) Stabilization with adsorbing PVB
- 6) Summary and Conclusion

June 29th 2011 NanoFormulation 2011

Investigations with TEM and pc-AFM

• TEM

good distribution for spray dried microcomposite particle

TEM, spray dried particle

PMMA49 **RS**21 **MAG**30

Investigations with TEM and pc-AFM

• TEM

good distribution for spray dried microcomposite particle

 phase contrast AFM shows good distribution in an injection moulded sample

Rudolph,M. Chem Ing Tech, 82, 2189 (2010)

• **BUT**: both investigations only have a very narrow field of view

phase contrast AFM, injection moulded sample **PMMA**64 **RS**06 **MAG**30

Investigations with TEM and pc-AFM

 phase contrast AFM large areas of higher phase values

phase contrast AFM, injection moulded sample **PMMA**64 **RS**06 **MAG**30

Investigations broad field pc-AFM and BSE-SEM

- phase contrast AFM large areas of higher phase values
- similar "clusters" for BSE-SEM

back scattering electron SEM, sample as before **PMMA**64 **RS**06 **MAG**30

Agglomerates? / Primary Particles?

Investigations broad field pc-AFM and BSE-SEM

PMMA61 - RS09 - MAG30

PMMA40 - RS10 - MAG50

PMMA61 - RS09 - MAG30

PMMA40 - RS10 - MAG50

June 29th 2011 NanoFormulation 2011

martin.rudolph@mvtat.tu-freiberg.de

- 1) Motivation
- 2) Solution Method
- 3) Preliminary Investigations
- 4) Theory of Nanoparticle Interactions
- 5) Experiments Stability
 - a) Destabilization with non-adsorbing PMMA, PC, PS
 - b) Stabilization with adsorbing PVB
- 6) Summary and Conclusion

- strong VAN DER WAALS attraction leads to agglomeration
- stabilization against agglomeration with surfactants by liquid-liquid phase-transfer

Machunsky, S. Coll & Surf A, 348, 186 (2009)

surfactant of choice: ricinoleic acid Gyergyek, S. *J Coll Interf Sci*, 354, 498 (2011)

- strong VAN DER WAALS attraction leads to agglomeration
- stabilization against agglomeration with surfactants by liquid-liquid phase-transfer

$$h = \frac{H}{r}$$

$$E_{\text{vdW Attraction}} = -\frac{C_{\text{H}}}{6} \left[\frac{2}{h^2 + 4 \cdot h} + \frac{2}{(h+2)^2} + \ln \frac{h^2 + 4 \cdot h}{(h+2)^2} \right]$$

$$\int 2 \cdot \pi \cdot r^2 \cdot \frac{\Phi}{Arr + 10} \cdot k \cdot T \cdot \left(2 - \frac{(h+2) \cdot r}{\delta} \cdot \ln \left(\frac{1 + \delta/r}{1 + h/2} \right) - \frac{h \cdot r}{\delta} \right) \quad , \frac{h \cdot r}{2 \cdot \delta} < \frac{h \cdot r}{2 \cdot \delta} < \frac{h \cdot r}{2 \cdot \delta} = \frac{h \cdot r}{\delta}$$

$$E_{\text{entrop Repulsion}} = \begin{cases} 2 \cdot \pi \cdot r^2 \cdot \frac{1}{A_{\text{FattyAcid}}} \cdot k \cdot T \cdot \left(2 - \frac{(n+2)r}{\delta} \cdot \ln\left(\frac{1+6/r}{1+h/2}\right) - \frac{n}{\delta}\right) &, \frac{n}{2 \cdot \delta} < 1 \\ 0 &, \frac{h \cdot r}{2 \cdot \delta} > 1 \end{cases}$$

$$E_{\text{interaction}} = E_{\text{vdW Attraction}} + E_{\text{entrop Repulsion}} + E_{\text{Born}}$$

Rosensweig, R.E. A.I.Ch.E.Symp.Ser., 5, 104 (1965)

22

June 29th 2011 NanoFormulation 2011

martin.rudolph@mvtat.tu-freiberg.de

June 29th 2011 NanoFormulation 2011

June 29th 2011 NanoFormulation 2011

martin.rudolph@mvtat.tu-freiberg.de

June 29th 2011 NanoFormulation 2011

- strong VAN DER WAALS attraction leads to agglomeration
- stabilization against agglomeration with surfactants by liquid-liquid phase-transfer
- stability effects by polymer addition

Depletion interaction – Phase diagrams

llett,S.M. PhysRevE, 51, 1344 (1995)

- 1) Motivation
- 2) Solution Method
- 3) Preliminary Investigations
- 4) Theory of Nanoparticle Interactions
- 5) Experiments Stability
 - a) Destabilization with non-adsorbing PMMA, PC, PS
 - b) Stabilization with adsorbing PVB
- 6) Summary and Conclusion

June 29th 2011 NanoFormulation 2011

5 Experiments – stability

- assessment of the mass concentration of primary particles w_{primary}
- centrifugation and determination of the concentration with TGA, Photospectrometer

diluted supernatant after centrifugation,

Rudolph, M. J Coll Interf Sci, 357, 292 (2011)

June 29th 2011 NanoFormulation 2011

- 1) Motivation
- 2) Solution Method
- 3) Preliminary Investigations
- 4) Theory of Nanoparticle Interactions
- 5) Experiments Stability
 - a) Destabilization with non-adsorbing PMMA, PC, PS
 - b) Stabilization with adsorbing PVB
- 6) Summary and Conclusion

June 29th 2011 NanoFormulation 2011

5a Destabilization with non-adsorbing polymers

June 29th 2011 NanoFormulation 2011

kinetics of coagulation: not rapid \rightarrow fast drying after mixing should reduce large amount of agglomerates

June 29th 2011 NanoFormulation 2011 PMMA

32

kinetics measured

with DLS

Sympatec Nanophox

 $c_{Mag} = 1.2g/l$ $c_{Poly} = 58.9 g/l$

kinetics of coagulation: problem of comparability to stability investigation due to very low colloid concentration

June 29th 2011 NanoFormulation 2011 PMMA

33

kinetics measured

with UVVIS

at 600nm

 $c_{Mag} = 1.2g/l$ $c_{Poly} = 58.9 g/l$

- Nano-Fe₃O₄ dispersion under microscope with $c_{Mag} = 1.5 \text{ g/l}$
- addition of PMMA leads to larger light-optically visible agglomerates, *t* = 15 min

- Nano-Fe₃O₄ dispersion under microscope with $c_{Mag} = 1.5 \text{ g/l}$
- addition of PMMA leads to larger light-optically visible agglomerates
- inverted BSE-SEM of spray dried particles
 PMMA64-RS06-MAG30
 show agglomerates as well

 similar agglomerate sizes for dispersion and moulded BSE-SEM crossection

- 1) Motivation
- 2) Solution Method
- 3) Preliminary Investigations
- 4) Theory of Nanoparticle Interactions
- 5) Experiments Stability
 - a) Destabilization with non-adsorbing PMMA, PC, PS
 - b) Stabilization with adsorbing PVB
- 6) Summary and Conclusion

5b Stabilization with adsorbing polymer

stabilization: increasing primary particle concentration with increasing polymer concentration

June 29th 2011 NanoFormulation 2011

C_{Poly} ↑

5b Stabilization with adsorbing polymer

particle size: increase in particle size with adsorbing polymer layer forming, of Langmuir type (line)

June 29th 2011 NanoFormulation 2011

5b Stabilization with adsorbing polymer

adsorption isotherm: Langmuir type adsorption of PVB on sterically stabilized nanomagnetite

June 29th 2011 NanoFormulation 2011

40

C_{Poly} ↑

- 1) Motivation
- 2) Solution Method
- 3) Preliminary Investigations
- 4) Theory of Nanoparticle Interactions
- 5) Experiments Stability
 - a) Destabilization with non-adsorbing PMMA, PC, PS
 - b) Stabilization with adsorbing PVB
- 6) Summary and Conclusion

6 Summary and Conclusion

- Solution and spray drying process is suitable for nanocomposite synthesis
- HOWEVER: nanoparticle interactions have to be considered
- Added, solved polymers will influence nanoparticle interaction
- Stabilization through adsorbing polymers reveals suitability of the solution method

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG

Martin Rudolph

martin.rudolph@mvtat.tu-freiberg.de

Sponsored by the German Research Foundation: DFG (PE1160/7-1)

DFG Deutsche Forschungsgemeinschaft

Thanks for your interest!

Meet me at poster D-PO3-20

» Nanofix – Nanoparticle-wax-formulations as Additives for Extruder Compounding«

Filler Homogeneity – SEM Analysis (F = 30 %)

June 29th 2011 NanoFormulation 2011

Phase contrast AFM analysis

Rudolph,M. CIT, 82, 2189 (2010)

45

June 29th 2011 NanoFormulation 2011

martin.rudolph@mvtat.tu-freiberg.de

June 29th 2011 NanoFormulation 2011

Supplemental

4<u>6</u>

Composition

• Interparticle Distance

June 29th 2011 NanoFormulation 2011

June 29th 2011 NanoFormulation 2011

martin.rudolph@mvtat.tu-freiberg.de

• Gravimetric Characterisation with TGA/FTIR

• Segregation Effects with Spray Drying

NanoFormulation 2011

- Spray Drying
- Büchi lab scale spray dryer co-current, inert-loop
- $x_{50, \text{ composite}} \approx 4 \ \mu\text{m}$
- up to 100g/h composites

