Innovations in Encapsulation - 2014

Encapsulation of acid-sensitive probiotic bacteria

<u>Michael Cook</u>, Dimitris Charalampopoulos , George Tzortis, and Vitaliy Khutoryanskiy.

15th July 2012

© University of Reading 2008

www.reading.ac.uk

Probiotics

- Very popular nutraceutical
- Show some promising clinical results for treatment of specific conditions, e.g. irritable bowel syndrome¹
- Attractive due to the safety of oral ingestion and lack of side effects

Ilya Metchnikoff

Oral administration of probiotics

• Loss of viability in the stomach before action in intestine

Letter	Region	T
0	Oesophagus	Ī
Α	Stomach	Ī
В	Proximal Small Intestine	Ī
С	Distal Small Intestine	T
D	Ascending Colon	Ī
E	Descending Colon	Ī

Image: Cook et al; Journal of Controlled Release, 2012, 162(1), 56-67.

Encapsulation

Encapsulation by extrusion

Image: Cook et al ; 2014; Hydrogels in cell-based therapies, RSC publishing, 95-111.

Alginate-chitosan matrices

Alginate-chitosan matrices

Cook et al; *Biomacromolecules*; 2011; 12(7), 2834-40.

Lbl-coated matrices

Build up of multilayers

Electrostatic self assembly studied by surface plasmon resonance.

Build up of multilayers

Stability of complexes studied

Coating visualisation by CLSM

Viability of bacteria in simulated gastric conditions

Cook et al; Journal of Materials Chemistry B; 2013; 1, 52-60.

Encapsulation targets release

Encapsulation of Synbiotics

- Galactose-oligosaccharides (GOS) are a "prebiotic"
- Prebiotic + probiotic = "Synbiotic"
- Aim was to form "multiparticulates" so that GOS can be separately formulated

Synbiotic release in GI conditions

• Both prebiotic and probiotic release controlled over duration of simulated GI passage

Cook et al; International Journal of Pharmaceutics; 2014; 466, 400-408

What's actually happening?

- Literature contains only suggestions of protection mechanism
- We want to 'see' pH inside materials

pH1 pH2 pH3 pH4 pH5 pH6 pH7 pH8 pH9 pH10 pH11 pH12 pH14

Pygall *et al*; International Journal of Pharmaceutics, 2009. **370**(1-2): p. 110-20

Li and Shwendemann; Journal of Controlled Release, 2005. **101**(1-3): p. 163-173

17

Preparation of pH probes

Pixel intensity to pH

Cook et al. (2013), Biomacromolecules, 14 (2), 387-393

Why do these work?

To summarise

- Alginate matrices containing probiotic bacteria can be modified in a number of ways to change their properties
- Prebiotic small molecules can also be co-incorporated in multiparticulates
- "pH maps" of capsules can be constructed by labelling the probiotic cells with suitable fluorophores

Acknowledgements

- Dr Dimitris Charalampopoulos and Dr Vitaliy Khutoryanskiy (UoR)
- Dr George Tzortzis (Clasado Ltd)

The Leverhulme Trust