

Understanding the Interactions of Nanoscale Materials with Biological Systems by Integrated Techniques

共同组建

Chunying CHEN

chenchy@nanoctr.cn National Center for Nanoscience and Technology, China CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety

Various types of nanoparticles used in biomedical research

Inorganic Nanoparticle

Quantum dot

Iron oxide

Solid Lipid Nanoparticle

Liposome

Nanocrystal

Nanotube

Nanowire

Polymeric Nanoparticle

Gold

Cai, W.; Gao, T.; Hong, H.; Sun, J. Nanotechnology, Science and Applications 2009, 2, 1. A. H. Faraji, P. Wipf / Bioorg. Med. Chem. 17 (2009) 2950-2962

How to design & screen the safe nanomaterials for the need of biomedical and other industrial application

The Janus Faces of Nanoparticles

e

.

Promising advances in nanomedicine

industrial application

Toxic effects of nanoparticle exposure

- Cross blood-brain barrier –impair health
 Pulmonary toxicity
 privacy concerns
- limited understanding

Donaldson & Seaton, J Nanosci Nanotech 7(2007)4607-4611

Entry and target tissues for uptake of engineered nanoparticles

Outline

Understanding Interactions of Nanoscale Materials with Biological Systems

- The ability of NPs for biological barriers
- Pulmonary responses after Long-term retention of nanoparticles
- The Role of Nanoparticles During cell Mitosis
- Specific responses by different types of cells
- ■Key factors influence the nano-bio interactions.

Nose-to-Brain transfer? Blood Brain Barrier?

- Possibility and Ability of inhaled Nanoparticle Entering into Brain directly?
- Is the olfactory neuronal pathway efficient for translocating inhaled UFPs to the central nervous system ?
- How do physico-chemical characteristics of NPs influence uptake and translocation?
- Are there any toxicological consequences?

Ti retention in Brain and Lung tissues

Nasal Instillation vs. Oral administration

Wang JX, Chen CY, et al, Toxicology, 2008

Fig. Titanium content in the olfactory bulb (A), cerebral cortex (B), hippocampus (C) and cerebellum (D) of mice (n=6) intranasally instilled 25 nm, 80 nm and 155 nm TiO₂ particles for 2, 10, 20 and 30 d.

Microbeam SR-XRF mapping techniques

Beamsize: 20X20 μm^2

 $3X5 \ \mu m^2$

Synchrotron radiation

μSRXRF mapping facility Institute of High Energy Physics

Advantages:

- Simultaneous multi-element determination
- the information in tiny areas and thin slices.
- improve the sensitivity and space resolution
- Non-destructive

Accumulation of nano-TiO₂ in mice olfactory bulb and brain following intranasal administration by SR-XRF mapping.

-5000

High

Low

<u>Olfactory Nerve</u> <u>Translocation pathways</u>

 TiO_2 nanoparticles could be transfered via the secondary and tertiary olfactory pathways to reach most parts of brain.

Wang JX et al, High Energy ad Nucl Physics, 2005 Wang JX et al, JRNC, 2007, Wang et al, 2008

A control group; B 25nm group; C 80nm group; D fine group

enlarged and elongated pyramidal cell soma the stratum pyramidale was irregular Nissl body decreased or disappeared.

GFAP-positive glial cells in the hippocampus of murine brain Activation of Astrocytes

Wang JX, Chen CY, et al, Tox Lett, 2008

Cu nanoparticle

Cu accumulation in various brain regions

Concentrations of Cu in discrete murine brain regions after intranasally instilling copper nanoparticles 21 d.

Monoamine neurotransmitters changes in the brain

Chen et al, Nanotoxicology, 2011

Question: What are differences of species?

The significance for humans still needs to be established.

Area: Rodents, the olfactory mucosa comprises 50% of total nasal mucosal surface Human, 5% of the total nasal mucosal surface

Human brain, ventral view

Rat brain, Dorsal view

Can nasal administration be a new way for pharmaceutical treating neural diseases ?

Outline

Understanding Interactions of Nanoscale Material with Biological Systems

- The ability of NPs for biological barriers
- Pulmonary responses after Long-term retention
- The Role of Nanoparticles During cell Mitosis
- Specific responses by different types of cells
- Key factors influence the nano-bio interaction

Pulmonary responses after Long-term retention of inhaled Toner particles

The Concentrations of $PM_{2.5}$ and PM_{10} in collecting particles from different indoor environments.

The Name of Experiment	Concentration of $PM_{2.5}$ (µg/m ³)	Concentration of PM_{10} (µg/m ³)
The Background of particles in an office (No Printing)	19.6	18.3
Collecting particles in an office with intermittent printing	33.3	54.0
Continue collecting particles in a photocopy room (48h)	52.7	36.9
Continue collecting particles in a conference room (48h)	24.1	20.3

Characterization of toner particles

Original toner

After printing

Bai R, Zhang L, Chen C, Tox lett, 2010

Long – term Retention of Inhaled Toner Particles in the Lung Tissues induced the pulmonary inflammatory

Outline

Understanding Interactions of Nanoscale Materials with Biological Systems

- The ability of NPs for biological barriers
- Pulmonary responses after Long-term retention
- The Role of Nanoparticles During cell Mitosis
- Specific responses by different types of cells
- Key factors influence the nano-bio interactions.

The Role of Nanoparticles During the Mitotic Phase

۲

Nanoparticles

Carboxyl-modified (COOH-PS) amino-modified (NH2-PS) polystyrene particles various sizes (50, 100, 500 nm in diameter) fluorescence conjugation

The dynamics and Intracellular Trafficking of PS Particles in live cells

Time-lapse observation of 100 nm COOH-PS nanoparticles in mitotic NIH 3T3 cells

Liu, Li, Zhao, Chen, Biomaterials, 2011

Spatial distribution of COOH-PS nanoparticles at different phase of mitosis in GFP-actin NIH 3T3 cells

No effect on the reorganization of the chromosome and actin cytoskeleton

Liu, Li, Zhao, Chen, Biomaterials, 2011

Spatial distribution of NH2-PS nanoparticles at different phase of mitosis in GFP-actin NIH 3T3 cells

Localization of NH₂-PS nanoparticles in GFP-actin NIH 3T3 cells

Localization of NH₂-PS nanoparticles in GFP-histone HeLa cells

Effect on the Organization of Mitotic Spindle and whole cell cycle

Localization of COOH-PS Nanoparticles and tubulin in fixed HeLa cells

Hela cells, tubulin tracker red, PS NPs Orange, Chromosome Green

Liu, Li, Zhao, Chen, Biomaterials, 2011

Effect on the Organization of Mitotic Spindle and whole cell cycle

Localization of NH₂-PS Nanoparticles and tubulin in live HeLa cells

Liu, Li, Zhao, Chen, Biomaterials, 2011

Intercellular localization of PS Nanoparticles

Interphase

Lysosome

Liu, Li, Zhao, Chen, Biomaterials, 2011

Time-Course and Size-Dependent Cytotoxocity

Cytotoxicity: COOH-PS << NH₂-PS

Liu, Li, Zhao, Chen, Biomaterials, 2011

Outline

Understanding Interactions of Nanoscale Materials with Biological Systems

- The ability of NPs for biological barriers
- Pulmonary responses after Long-term retention
- The Role of Nanoparticles During cell Mitosis
- Specific responses by different types of cells
- Key factors influence the nano-bio interactions

SERS: Disease diagnosis and detection

Immunological Labeling

Drug and gene carriers

Thermotherapy agents and temperature sensitive container

Application of Gold NPs in Biomedicine

Optical extinction

Labeling and tracking for Tumor (NIR, X-ray CT imaging, SERS)

Human pulmonary adenocarcinoma cell (A549 cells)

Normal human bronchial epithelial cell(16HBE cells)

Rat Bone marrow mesenchymal stem cells (MSC cells)

Wang, Chen, et al, Nano Letters, 2011

Specific responses to cancer cells

图科学院

Changes in cell shape

●科学院

Why cell-specific responses?

- 1. Internalized amounts of Au NRs?
- 2. Uptake pathways?
- 3. Intracellular trafficking?

Different Internalization of Au NRs

Different Removal of Au NRs

Wang, Chen, et al, Nano Letters, 2011

Intracellular localization

A549: mitochondria, lysosomes/endosome 16HBE: lysosomes/endosome MSC: lysosomes/endosome

Different localization during exclusion in vitro

Increased lysosomal permeation by Au NRs in cancer cells

AO staining

damage to the lysosomal membrane lead to further translocation of the Au NRs to other organelles

What is next for Au NRs?

JC-1 staining

For A549 cells,

Decrease in mitochondrial membrane potentials. Increased intracellular ROS level

Cellular uptake and cytotoxicity of Au nanorods: The influence of surface chemistry and aspect ratio

Calculated aspect ratio: 1.2, 2.0, 3.0, 4.0

The linear fitting of longitudinal plasmonic maximum to aspect ratio calculated from data based on TEM images.

Coating and Shape dependent cellular uptake

Qiu and Chen, Biomaterials, 2010, 31, 7606-7619

Selective Targeting of Gold Nanorods at the Mitochondria of Cancer Cells: Implications for Cancer Therapy

²² Full Assessment of Fate and Physiological Behavior of Nanomaterials in vivo

cell

Drosophila

Daphnia

Zebra fish

Worm Crawling

Caenorhabditis elegans (C. elegans)

Important model system

Rat/mouse

- About 1000 somatic cells.
- A life cycle of about 3 days
- The body length: 1 mm.

Metabolism

Uptake & accumulation Distribution Elimination Toxicity Lethality

Life span

Behavior

Comparison of toxicological effects of different types of QDs.

Qu, Tang, Chen, et al. Nano Lett, 2011

Body distribution of QDs in C. Elegans

Material: 620 nm QDs (CdTe MPA)

Treatment: Adult feed with live OP50;

exposed 36h, wash and move to clean plate; 4day (96h) wash and move to clean plate; 4.5 day(108h) confocal image;

QDs cannot enter eggs and neonatal lava

QD distribution in intestinal GFP-labeled *C. elegans*.

Qu, Tang, Chen, et al. Nano Lett, 2011

Reproductive behavior and egg-laying difficulty after long time exposure.

Qu, Tang, Chen, et al. Nano Lett, 2011

In situ elemental analysis and degradation of QDs

Qu, Tang, Chen, et al. Nano Lett, 2011

Materials with Biological Systems

- Nanotoxicology is a new and highlighted field, which opens a great opportunity and challenge to chemist, biologist, and toxicologist.
- The rules are different for living matters when materials become nanoscale. Some concepts of traditional toxicology need to be modified in nanotoxicology.
- The ability of NPs for biological barriers
- Key factors influence the nano-bio interactions.
 - All studies are a function of particle size, size distribution, shape, surface coating, pH, reactivity, vehicles, agglomeration / aggregation.....
- More issues will be taken into consideration

Models for Risk Evaluation of Nanoparticle Exposure

In vivo testing

Bronchia Instillation
Bronchia Injection (without surgery)
Nasal Instillation
Inhalation (ambient air)
Blood vein injection
Oral gavage

High-throughput screening

Primary and cell lines

The nematode C. elegans

about 1000 somatic cells. a life cycle of about 3 d 1 mm

<u>Drosophila</u>

Daphnia magna

<u>Zebra fish</u>

Financial Support

- National Nature and Science foundation of China (NSFC)
- Chinese Academy of Sciences (CAS)

 Ministry of Science and Technology of China (MOST)

Collaborations & Acknowledgements

National Center for Nanoscience and Technology (NCNST)

Xiaochun Wu, Prof **Guangjun Nie, Prof Zhiyong Tang, Prof Dong Han, Prof.** Fang LAO, PhD Ying LIU, Dr Yang QIU

Institute of High Energy Physics, CAS

Vuvi CAO_Dr.

Yuliang ZHAO, Prof. Zhifang CHAI, Prof. Wei LI, PhD Jiangxue WANG, PhD

hD

History

2012, the 6th NT Conf., Beijing, China 2010, the 5th NT Conf., UK 2008, the 4th NT Conf., Switzerland 2007, the 3rd NT Conf., Italy 2006, the 2nd NT Conf., USA 2005, the 1st NT Conf., USA

Contact

Names: Drs. Rui CHEN & Motao ZHU Email: nanotoxicology@nanoctr.cn Tel: +86-10-82545526/ Fax:+86-10-62656765 National Center for Nanoscience and Technology, China No.11, Beiyitiao Zhongguancun 100190 Beijing Steering Committee Chair: Prof. Yuanfang Liu Conference Chair: Prof. Yuliang Zhao Secretary General: Prof. Chunying Chen

Organizers: National Center for Nanoscience and Technology, China

Supported by: MOST 973 program, National Natural Science Foundation of China, Chinese Academy of Sciences, Chinese Society of Toxicology

Programme: The conference will be divided into sessions that focus on specific topics of all sciences for nano-bio interfaces. The paper presented at the conference will be published at a peer-reviewed SCI journal of nano-field.

Theme Covered: it includes but not limits to: Nanotoxicology, Nanobiotechnology, Nanomedicine, Bio-nanomaterials, Nanoecology, Nanochemistry, Nano standardization, etc.

Thank you!

http://www.nanoctr.cn http://nanosafety.ihep.ac.cn

Prof. & Dr. Chunying chen <u>chenchy@nanoctr.cn</u>

