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A comparison of the performance of mixing systems for
viscous solid-liquid mixing using CFD-DEM
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What is solid-liquid mixing?

Mixing of solid particles in a liquid
Flow regime at tank level
◦ Laminar
◦ Transitional
◦ Turbulent

Flow at the particle level
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Complete

Industrial requirement

Maximal contact area between the phases
Njs is the impeller velocity for complete suspension

CompletePartial Homogenous



4

Issues related to Njs

Njs is hard to estimate
◦ Work has only focused on the turbulent

regime
◦ Unclear role of fluid and particle properties

Approach limited to correlations
◦ Empirical or semi-empirical
◦ i.e Zwietering correlation

A new set of experiments for each
geometry?
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Today’s talk

Unresolved CFD-DEM model for solid-liquid mixing
Model validation
Investigation of the influence of the agitator on suspension
dynamics
◦ Fraction of suspended solid
◦ Concentration profiles
◦ Cloud height
◦ RSD



Models + -
Two-fluid model
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• Fast
• Large number of particles

• Limited to dense flow
regime

• Hard to model maximal
packing fraction

• Direct numerical
simulation

• Accurate
• Scales well to larger systems
• Models maximal packing

accurately

• Computationally
intensive

• Limited number of
particles

• Still quite computationally
intensive

• Not extensively used for
solid-liquid flows

Resolved CFD-DEM

Unresolved CFD-DEM
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What is unresolved CFD-DEM?
Combine CFD for the liquid with
DEM for the solid
Position and velocity of each
particles are tracked
Particle-Particle and Particle-
Geometry collisions are handled
using simple contact laws
Two-way solid-fluid coupling
calculated via expressions for
the hydrodynamic forces



Unresolved CFD-DEM model
Fluid

Volume-Averaged Navier-Stokes
(VANS)

Solid particles
Newton’s second law

Solid-liquid coupling
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• Pressure gradient

• Viscous stress

• Drag
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Rotating geometry

Immersed Boundary
◦ See Blais et al

(2015,2016,2017a,2017
b)

Rotating frame of
reference
◦ Delacroix et al (2020a,

2020b)
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Model validation

11
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System studied

Pitched blade turbine
◦ Tank diameter (T) – 0.365m
◦ Impeller diameter (D) – 0.122m
◦ Viscosities – 1  and 0.05 Pa.s
◦ Density of the fluids – 1400 and 1200 kg/m3

◦ Density of the particles – 2500 kg/m3

◦ Sauter diameter of the particles – 3mm
◦ Mass fraction of solids – 10% (~150k particles)

Visual observation
Pressure gauge technique
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Gentle simmering at low speed
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Umbrella – 250 RPM
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Suspension - 450 RPM
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Pressure gauge technique (PGT)
◦ To obtain the fraction of suspended

solids
◦ Initially, weight of the particles is held by

the tank walls
◦ Once suspended, this weight is held by

the liquid
◦ Increases apparent density
◦ Increases hydrostatic pressure
◦ Total pressure can be measured at the

bottom of the tank
◦ Substracting dynamic pressure,

hydrostatic pressure can be recovered
◦ Fraction of suspended particles is

obtained
◦ Can also be used in CFD-DEM

simulations

16



17

Pressure gauge technique (PGT)
◦ To obtain the fraction of suspended

solids
◦ Initially, weight of the particles is held by

the tank walls
◦ Once suspended, this weight is held by

the liquid
◦ Increases apparent density
◦ Increases hydrostatic pressure
◦ Total pressure can be measured at the

bottom of the tank
◦ Substracting dynamic pressure,

hydrostatic pressure can be recovered
◦ Fraction of suspended particles is

obtained
◦ Can also be used in CFD-DEM

simulations

17

P



18

Fraction of suspended particles
Pitched blade turbine

Tank diameter (T) – 0.365m
Impeller diameter (D) – 0.122m
Viscosities – 1  Pa.s
Density of the fluids – 1400 kg/m3

Density of the particles – 2500 kg/m3

Sauter diameter of the particles – 3mm
Mass fraction of solids – 10% (~150k particles)

References
- B. Blais et al. (2016), Journal of Computational

Physics, 318, 201-221.
- Delacroix, B et al. (2020) Chemical Engineering

Science, 230, 116-137.
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Comparing the performance of viscous mixers
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Impellers
Wide range of geometries in
the laminar regime
◦ Anchor (a)
◦ Helical ribbon (b)
◦ Paravisc (c)
◦ Maxblend (d)
◦ PBT (e)
◦ Shall act as our reference

comparison

Each configuration generate
different flow patterns
Which one is the most
efficient for solid-liquid
mixing?
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Single phase power consumption

At low Reynolds
number, the PBT
has a lower Kp

The other
agitators are
similar
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Fraction of suspended particles

The PBT requires
significantly higher impeller
velocity to suspend
particles
This is an unfair
comparison
◦ PBT has a much smaller

diameter!
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Power consumption

Most impeller perform
similarly
◦ Maxblend and anchor seem to be

slightly better

Helical ribbon is a clear
outlier…
◦ It is by far the worst…
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Mechanism

Shear stress generated at
the bottom of the vessel
strongly correlates with
the capacity to suspend

Is the fraction of
suspended particle all
there is to it?
◦ Solid concentration
◦ Cloud height
◦ RSD

Anchor Ribbon Paravisc

Maxblend PBT
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Void fraction

Anchor

Ribbon

Paravisc

Maxblend

N=Njs N>Njs N=Njs N>Njs
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Cloud height

High-shear impeller do not
behave as well
Axial flow and shear are required
◦ Paravisc
◦ Maxblend

The PBT is still surprisingly good
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RSD

Agitators that provide the
most distributed flow
throughout the vessel offer
better RSD
◦ Paravisc
◦ Maxblend
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Conclusions
Unresolved CFD-DEM can be used to predict solid-liquid mixing
◦ Fraction of suspended particles
◦ Solid distribution / cloud height
◦ RSD

Viscous solid-liquid mixing requires two elements
◦ Shear forces on the particle bed
◦ Strong axial circulation

Agitators that provide both of these perform extremely well
◦ Paravisc
◦ Maxblend (to a lesser extent)

The PBT is actually a pretty decent agitator for viscous fluids…
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Thank you for your time!

Bruno Blais
Assistant Professor
Polytechnique Montreal
Bruno.Blais@polymtl.ca
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