

A comparison of the performance of mixing systems for viscous solid-liquid mixing using CFD-DEM

Bruno Blais*, Bastien Delacroix, Louis Fradette, François Bertrand

What is solid-liquid mixing?

Mixing of solid particles in a liquid

Flow regime at tank level

- Laminar
- Transitional
- Turbulent

$$\operatorname{Re} = \frac{\rho_f ND^2}{\mu}$$

Flow at the particle level

$$\operatorname{Re}_{p} = \frac{\rho_{f} \left\| \mathbf{u} - \mathbf{v} \right\| d_{p}}{\mu}$$

Industrial requirement

Maximal contact area between the phases N_{is} is the impeller velocity for complete suspension

Issues related to N_{is}

N_{js} is hard to estimate

- Work has only focused on the turbulent regime
- Unclear role of fluid and particle properties

Approach limited to correlations

- Empirical or semi-empirical
 - i.e Zwietering correlation

A new set of experiments for each geometry?

$$N_{js} = S\nu_f^{0.1} \left(\frac{(\rho_p - \rho_f) g}{\rho_f}\right)^{0.45} d_p^{0.2} X^{0.1} D^{0.15}$$

Unresolved CFD-DEM model for solid-liquid mixing

Model validation

Investigation of the influence of the agitator on suspension dynamics

- Fraction of suspended solid
- Concentration profiles
- Cloud height
- RSD

Models

Two-fluid model

- Fast
- Large number of particles

- Limited to dense flow regime
- Hard to model maximal packing fraction
- Computationally intensive
- Limited number of particles
- Still quite computationally intensive
- Not extensively used for solid-liquid flows

Resolved CFD-DEM

Unresolved CFD-DEM

• Direct numerical simulation

- Accurate
- Scales well to larger systems
- Models maximal packing accurately

What is unresolved CFD-DEM?

Combine CFD for the liquid with DEM for the solid

Position and velocity of each particles are tracked

Particle-Particle and Particle-Geometry collisions are handled using simple contact laws

Two-way solid-fluid coupling calculated via expressions for the hydrodynamic forces

Unresolved CFD-DEM model

Fluid

Volume-Averaged Navier-Stokes (VANS)

$$\partial_t \left(\boldsymbol{\varepsilon}_f \right) + \nabla \cdot \left(\boldsymbol{\varepsilon}_f \boldsymbol{u} \right) = 0$$

$$\partial_t \left(\boldsymbol{\varepsilon}_f \boldsymbol{u} \right) + \nabla \cdot \left(\boldsymbol{\varepsilon}_f \boldsymbol{u} \otimes \boldsymbol{u} \right) = -\frac{\boldsymbol{\varepsilon}_f}{\rho_f} \nabla p + \nabla \cdot \boldsymbol{\tau} - \boldsymbol{F}_{pf}$$

Solid particles

Newton's second law

$$m_i \frac{d^2 \mathbf{x}_i}{dt^2} = \boldsymbol{f}_{\text{pf},i} + \boldsymbol{f}_{\text{contact},i}$$

Solid-liquid coupling

 $F_{pf} = \frac{1}{\Delta V} \sum_{i}^{n_{p}} f_{pf,i}$ $f_{pf,i} = f_{d,i} + f_{\nabla p,i} + f_{\nabla \cdot \tau,i} + f_{\text{Saff},i}$

- Pressure gradient
 Drag
- Viscous stress

Rotating geometry

Immersed Boundary

See Blais et al (2015,2016,2017a,2017 b)

Rotating frame of reference

Delacroix et al (2020a, 2020b)

Model validation

System studied

Pitched blade turbine

- Tank diameter (T) 0.365m
- Impeller diameter (D) 0.122m
- Viscosities 1 and 0.05 Pa.s
- \circ Density of the fluids 1400 and 1200 kg/m 3
- Density of the particles 2500 kg/m³
- Sauter diameter of the particles 3mm
- Mass fraction of solids 10% (~150k particles)

Visual observation

Pressure gauge technique

Gentle simmering at low speed

Umbrella – 250 RPM

Suspension - 450 RPM

Pressure gauge technique (PGT)

- To obtain the fraction of suspended solids
 - Initially, weight of the particles is held by the tank walls
 - Once suspended, this weight is held by the liquid
 - Increases apparent density
 - Increases hydrostatic pressure
 - Total pressure can be measured at the bottom of the tank
 - Substracting dynamic pressure, hydrostatic pressure can be recovered
 - Fraction of suspended particles is obtained
- Can also be used in CFD-DEM simulations

Pressure gauge technique (PGT)

- To obtain the fraction of suspended solids
 - Initially, weight of the particles is held by the tank walls
 - Once suspended, this weight is held by the liquid
 - Increases apparent density
 - Increases hydrostatic pressure
 - Total pressure can be measured at the bottom of the tank
 - Substracting dynamic pressure, hydrostatic pressure can be recovered
 - Fraction of suspended particles is obtained
- Can also be used in CFD-DEM simulations

Fraction of suspended particles

Pitched blade turbine Tank diameter (T) – 0.365m Impeller diameter (D) – 0.122m Viscosities – 1 Pa.s Density of the fluids – 1400 kg/m³ Density of the particles – 2500 kg/m³ Sauter diameter of the particles – 3mm Mass fraction of solids – 10% (~150k particles)

References

- B. Blais et al. (2016), Journal of Computational Physics, 318, 201-221.
- Delacroix, B et al. (2020) Chemical Engineering Science, 230, 116-137.

Comparing the performance of viscous mixers

Impellers

Wide range of geometries in the laminar regime

- Anchor (a)
- Helical ribbon (b)
- Paravisc (c)
- Maxblend (d)
- PBT (e)
 - Shall act as our reference comparison
- Each configuration generate different flow patterns

Which one is the most efficient for solid-liquid mixing?

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 U eulerian Z

Single phase power consumption

At low Reynolds number, the PBT has a lower Kp

The other agitators are similar

Fraction of suspended particles

- The PBT requires significantly higher impeller velocity to suspend particles
- This is an unfair comparison • PBT has a much smaller diameter!

Power consumption

Most impeller perform similarly

 Maxblend and anchor seem to be slightly better

Helical ribbon is a clear outlier...

• It is by far the worst...

Mechanism

Shear stress generated at the bottom of the vessel strongly correlates with the capacity to suspend

Is the fraction of suspended particle all there is to it?

- \circ Solid concentration
- Cloud height
- RSD

URPE

Cloud height

High-shear impeller do not behave as well

Axial flow and shear are required

• Paravisc

Maxblend

The PBT is still surprisingly good

RSD

Agitators that provide the most distributed flow throughout the vessel offer better RSD

- Paravisc
- Maxblend

Conclusions

Unresolved CFD-DEM can be used to predict solid-liquid mixing

- Fraction of suspended particles
- Solid distribution / cloud height
- $\circ RSD$

Viscous solid-liquid mixing requires two elements

- Shear forces on the particle bed
- Strong axial circulation

Agitators that provide both of these perform extremely well

- Paravisc
- Maxblend (to a lesser extent)

The PBT is actually a pretty decent agitator for viscous fluids...

Thank you for your time!

Bruno Blais Assistant Professor Polytechnique Montreal Bruno.Blais@polymtl.ca

Fonds de recherche

Juébec 👗 🛣

Nature et

technologies

References to some of the work presented :

- Delacroix, B et al. (2020) Chemical Engineering Science, 230, 116-137.
- Delacroix, B. et al. (2020). Powder Technology.
- O. Bertrand, B. Blais, F. Bertrand, L. Fradette (2018) Chemical Engineering Research and Design.
- B. Blais, O. Bertrand, L. Fradette, F. Bertrand (2017) Chemical Engineering Research and Design, 123, 228-273.
- B. Blais & F. Bertrand (2017), Chemical Engineering Research and Design 118 270-285.
- B. Blais, M. Lassaigne, C. Goniva, L. Fradette & F. Bertrand (2016), Journal of Computational Physics, 318, 201-221.
- M. Lassaigne, B. Blais, L. Fradette, F. Bertrand (2016), Chemical Engineering Research and Design, 108, 55-68.
- B. Blais, M. Lassaigne, C. Goniva, L. Fradette & F. Bertrand (2016), Computers & Chemical Engineering, 85, 136-146.

