The Turbiscan Stability Analyzer

Formulation Stability And Shelf Life Analysis For Emulsions and Suspensions

Gordon Irvine, Ph.D. Formulaction, Inc.

www.formulaction.com

Static Multiple Light Scattering can be used to monitor particle concentration and size changes inside of concentrated formulations.

Moving measurement head

Backscattering (BS) is a function of:

d : particle size

Φ : particle concentration

Repetition of the measurement provides:

Δd : change in particle size

 $\Delta \Phi$: change in particle concentration

Changes in the signal = changes in the sample = monitoring of destabilization

Particle Sizing

Turbiscan: Instrument Technology and Theory

Mean Particle Size Measurement Size range: from 10 nm to >1mm

 Using backscattered or transmitted light, <u>mean particle diameter can be</u> <u>calculated without sample dilution</u>

• Nanoparticles as small as 10 nm have been measured using this technique.

Turbiscan: Data Mean Particle Size Calculations

 \Rightarrow SMLS covers a wider concentration area than DLS (17% of samples)

The Histidine effect

- Problematic: Temperature increase leads to proteins denaturation which consists in modifying interactions and going from transparent to opaque samples linked to size increase
- **Solution**: Histidine, an amino-acid, is currently used to protect therapeutic protein against denaturation.
- System: 8 samples of BSA (10% wt) with different amount of histidine (mM) were analyzed at 60° C

Increasing histidine concentration will keep diameters closer to their native state (here, below 50 nm).

Turbiscan Applications Beta-Carotene Nanoemulsions

- O/W emulsions consisting of β-carotene-containing oil and varying amounts of emulsifiers in water were prepared. Differing methods of temperature (a), pressure (b), and number of cycles (c) were analyzed.
- (a) Increasing temperature causes increasing BS signal = flocculation.
- (b) Pressure will reach an optimum kinetic around 100 MPa, lower or higher pressures increase this flocculation kinetic.
- (c) Number of homogenization cycles is optimized at three.

Initial particle sizes ranged from 114-184 nm

Y. Yuan et al. Food Research International 41 (2008) 61-68

Nanoparticle Milling Effect

- The milling process and time can be used to monitor the mean particle size of concentrated silica suspensions.
- Analysis time is 25 seconds and occurs on the native sample with no dilution and in a non-destructive manner.

Milling time

Pigment Applications Particle Sizing: Mean Particle Sizing

Analysis of TiO₂ particles

- The Turbiscan, along with cryo-microscopy, both confirm that the mean particle size of TiO₂ suspensions increase with increasing concentration.
- Due to concentration limitations, other methods (DLS, laser diffraction) cannot monitor such an effect.

THE REFERENCE FOR STABILITY MEASUREMENTS

TURBISCAN STABILITY & SIZE

Turbiscan summary:

OSPERSIBILIT

REDISPERSION

STABILT

Formulaction

- Rapid shelf life studies
- Objective, reproducible results
- Multiple applications, multiple projects
- Identification and quantification of instabilities
- Mean particle size calculations in concentrated media

Other applications:

- Food + Beverage
- Metalworking fluids
- Oil + Gas
- Foam and defoamer analysis
- Paint and coating suspensions

FULL CHARACTERIZATION OF DISPERSIONS

Thank you!

Gordon.Irvine@formulaction.com Formulaction.com

www.formulaction.com

STABILITY & SIZE

IICRORHEOLOGY

RHEOLOGY ON CHIP