#E5D  INSTITUTE OF 5
“’1 PARTICLE SCIENCE
h"w«*”” & ENGINEERING UNIVERSITY OF LEEDS

CHARACTERISATION OF FLOWABILITY
OF COHESIVE POWDERS BY
INDENTATION

Mojtaba Ghadiri, Ali Hassanpour, Chuan Wang,

Massih Pasha and Umair Zafar

16th December 2009




INSTITUTE OF

PARTICLE SCIENCE
& ENGINEERING

UNIVERSITY OF LEEDS

(Cleaver, 2007)



INSTITUTE OF

PARTICLE SCIENCE

& ENGINEERING
UNILVERSITY OF LEEDS U N IVE RS ITY O F LEED

Bulk Powder Flow

Interparticle attraction forces, such as van der Waals,
electrostatics and liquid bridges are responsible.

A number of techniques are available for quantifying bulk
cohesion of powders:

eShear cells

eUniaxial compression test
«Sevilla powder tester
eRaining beds

Also a number of devices operating under less well-defined
conditions:

eFunnel tester

eRepose angle measurement

Freeman powder rheometer

«Stable Micro System powder flow analyser
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Technological Needs:

1.In a number of applications, there is
insufficient material for testing or
material is not easily accessible.

2.There is a need to test powder
flowability at very low levels of
stresses.
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Analysis of the flowability of loosely compactec
cohesive powders at low stress levels
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Powders in nuclear industry
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Requirements:
Testing on small quantities of powders
at low loads

Why not

Indenting on a powder bed?



Objectives
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e Characterise bulk powders, compacted
at low levels of pressure, by indentation
and compare with unconfined compression
and shear cell techniques

e Analyse the deformation process around the
indent based on single particle properties
using DEM.

Samples:

a-Lactose monohydrate, Avicel, starch powders, magnesium
carbonate, glass beads made cohesive by silanisation



INSTITUTE OF

PARTICLE SCIENCE

& ENGINEERING

UNIVERSITY OF LEEDS

UNIVERSITY OF LEED

Indentation Method

This is being developed at Leeds to infer the plastic yield stress of
powder beds and hence bulk cohesion.
e Very small scale, a few mm3.

« Very low levels of stresses. Ball Indenter

Loading Arm

What does the

indentation test give?

Stationary
Anyil

\ | y - Specimen

C

Penetration vs load
from which the
hardness is calculated

Indentation process



Hardness Calculation
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F
H — maX
A

For ball indenters: A=rn(d,h, .. - he e max )

|f hc’max <<db — A — ﬂdbh
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Incipient yield loci and consolidation

surfaces (Nedderman’s book) UNIVERSITY OF LEED

- , Termination
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Indentation on a-lactose powder bed
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Typical indentation cycles (tablets pre-consolidated to 3 kPa)
Each tablet has been indented with a high precision spherical glass indenter,
1.588 mm in diameter.
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Effect of indentation load
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Hardness values of a-lactose pre-consolidated to five different levels
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Hardness value is independent of indentation load within a certain range
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Relationship between indentation hardness and
consolidation pressure for o-lactose
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Relationship between indentation hardness and
consolidation pressure for Avicel
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Relationship between indentation hardness and
consolidation pressure for starch
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Relationship between indentation hardness and

consolidation pressure for magnesium carbonate
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Relationship between indentation hardness and
consolidation pressure for cohesive glass beads
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Determination of Yield Stress
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« When an indentation is made the plastic

deformation is confined, and therefore hardness is
much larger than yield stress.

e The relationship:

C: constraint factor. Affected by material
properties (deformation mode), indenter geometry
and friction. Relevant properties: elastic modulus,
work-hardening, anisotropy.



Effect of Failure Mode
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(a) (b) (c) (d)

(a) rigid-perfectly plastic,
(b) elastic-perfectly plastic,
(c) rigid-plastic with work-hardening, and

(d) elastic-plastic with work-hardening.



Rigid-Perfectly Plastic Indentation

UNIVERSITY OF LEED

« Wedge-cutting
mechanism for sharp

indenters, <30°: H/y — 3

e Radial compression, >
30° next slide



Elastic-Perfectly Plastic Indentation
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« Deformation is treated as expansion of a spherical
cavity (Hill, 1950):

P_2,
Y 3




Elastic-Perfectly Plastic Indentation
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e For conical or pyramidal indenters with half-angle 0
Johnson (1970) gives:

H 2
Y 3

E cot@j

(]+Ln
3Y

(not valid for sharp indenters)



Work-Hardening
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H/Y>>3

Flow stress is strain dependent: o=Y+/1

Considering work-hardening rate: IT’
M= T x(g-¢€,)

Taking the expansion of spherical cavity approach,
Bishop et al. (1945) give:

2
H=p=2y ]+Ln(2—E) 27
3 sy 27
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Constraint factor Material Properties
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Relationship between yield stress and pre-

consolidation pressure for a-lactose unNIversiTY oF LEEDS
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Comparison of Trend
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Experimental Approach

Schulze ring shear tester - used to evaluate unconfined yield strength and relate
to bulk powder flowability.

. O, « Major Principal Stress
Flow Function — ffC — 1

Oc " Unconfined Yield Strensth

Schulze Ring Shear
Tester



INSTITUTE OF

PARTICLE SCIENCE

& ENGINEERING
UNILVERSITY OF LEEDS U N IVE RS ITY O F LEED

Uniaxial Compression

ff. :5

Failure




Comparison of yield stress of a-lactose

determined from shear cell, unconfined
compression and indentation UNIVERSITY OF LEED
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Flowability Guidelines
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What do we expect for the value of the constraint factor?

Approaches:

1.Continuum Mechanics
2.Distinct Element Method
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Distinct Element Method

DEM solves Newton’s second law of
motion and a relative force-
displacement law for a set of discrete
particles. This tool can provide
insightful data otherwise unattainable.

Laws of Motion:

m: Mass of Particle
Ma = Z F  a: Linear Acceleration

F: Force

I: Moment of Inertia
la= Z M a: Angular Acceleration

M: Momentum of

Tangential force

UNIVERSITY OF LEED



DEM Principles
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In a DEM simulation, each particle possesses translational and rotational
motion. The motion of each particle can be described by solving Newton’s

equation of motion according to the external forces applying to the
spheres.

W'  Tangential stiffness
Ks‘/ Slider

Dashpot
Fna’

Spring Fta’

n(NormaI stiffness)

Spring-Dashpot Model



Particle Properties
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Number of particles: 4800
Average radius of the particles: 70 pm
Diameter of the die: 2.88 mm
Surface energy: 0.2 J m?

Single Particle Particle Cylinder Loading Piston
Properties (Cohesive Glass bead) | (PTFE wall) (Steel)
Normal Stiffness (N/m) 69600 2640 44000
Shear Stiffness (N/m) 69600 2640 44000
Friction Coefficient (-) 0.16 0.15 0.3

JKR Theory: Fpui-off =3TYR = 4.1e” N
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Pre-consolidation Process
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Indentation Process
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Measurement Area
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* Measurement position

Cylinder edge

Cylinder Diameter: 2.88 mm
Measurement Number: 192
/v Measurement Diameter: 0.36 mm

Measurement Around each 9 particles are within a
measure sphere.
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Porosity analysis
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Indentation Area

Porosity Porosity
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Porosity profile rarely changes during the indentation, which indicates the
indentation process does not consolidated the particle assembly.



Indentation
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Indentation Area
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Shear stress 3-D profile after indentation
Oz — Onx

Shear Stress =

Constraint Factor (C)= Hardness/Shear Stress
= 2.94 (cohesive glass beads)
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Summary

e« The indentation hardness and yield stress of weak compacts of a-
lactose, Avicel, starch, cohesive glass beads (made cohesive by
silanisation) and magnesium carbonate have been assessed using
indentation and the trend compared with other techniques.

e The indentation hardness obtained from ball indentation can be
related to the unconfined yield stress.

« The constraint factor (C) is being evaluated for a number of different
materials.

e The relationship between single particle properties and bulk powder
flow behaviour has been analysed by DEM. Further work is needed to
provide good predictability.
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