Encapsulation in double emulsions
Fundamental analysis of stability

S. Nachtigall, C. Holtze, A. Laurenzis, S. Bachmann, M. Vranceanu, G. Oetter,
F. Runge (BASF SE)
V. Götz, S. Hosseinpour, W. Peukert (FAU Erlangen)
N. Leister, H. P. Karbstein (KIT Karlsruhe)

Formula X I Manchester I 24-27th June 2019
Double emulsions: promising structures to encapsulate hydrophilic active ingredients

Potential applications - Encapsulation of...
- ...enzymes, proteins or peptides for detergents
- ...hydrophilic bioactive ingredients (e.g. vitamins) for cosmetic and food applications
- ...hydrophilic crop protecting agents and active ingredients in pharmaceuticals

Benefits
- Stability/protection of active ingredients
- Triggered or retarded release
- Taste/smell masking
- Drift and washing-out prevention
Double emulsions – example “Hollow microcapsules”

Concept
- Filling of empty, porous capsules with active material
- Pores of capsules to be closed after filling

Benefits
- Universal capsules for various active ingredients
- Biodegradable capsule matrix

Porous capsule

@BASF

Active loading

Curing

@customer

Closed capsule
Double emulsions – example “Hollow microcapsules”

Step 1: W₁ in O emulsification
- Lipophilic surfactant (W/O-emulsifier)
- High energy input (e.g. gear rim dispersing device)

Step 2: (W₁/O) in W₂ emulsification
- Hydrophilic surfactant (O/W-emulsifier)
- Low energy input (e.g. stirred vessel)

Distillation of solvent

Filtration

Washing
Double emulsions: challenges

Advantages
- Various different applications
- Preparation with common equipment

BUT
- Big challenge to keep active inside
- No guidelines for process and product development
Double emulsions: challenges
Analysis of coalescence- and diffusion phenomena in $W_1/O/W_2$-double emulsions

- New analytical approaches for investigating instability mechanisms
- Influence of process parameters
- Identification of structure/property-relationships
- Guidelines for faster formulation and process development

Formulation and process development based on molecular understanding
Methods to investigate instability mechanisms

- Diffusion and coalescence at interfaces: single drop experiments & interfacial tension measurements

- Characterization of interfaces via nonlinear spectroscopy (SFG, SHG)

- Supported by molecular modeling (BASF)

- Analysis of double emulsions in different scales

*S. M. Neumann, CC BY
Diffusion and Coalescence Time Analyzer*
Influence of emulsifier systems

Diffusion and coalescence at interfaces
Influence of emulsifier system

Oil phase: Miglyol® 812
W/O-emulsifier: PGPR
O/W-emulsifier: Lutensol® TO8

O/W-emulsifier disturbs stability
Analysis of emulsifier diffusion
Interfacial tension measurements

Oil phase: Miglyol® 812
O/W-emulsifier: Lutensol® TO8

Determination of emulsifier diffusion via interfacial tension
Characterization of interfaces
Nonlinear spectroscopy (SFG, SHG)

- Second Harmonic Generation (SHG): amount of molecules at interface (intensity)
- Sum Frequency Generation (SFG): type and orientation of molecules (spectra)

Planar setup

Scattering setup

- Fundamental analysis
- Learning about systems

Analysis of real emulsions

Interfacial emulsifier composition

Experimental SFG setup
Experimental SHG setup
Characterization of interfaces
Planar SFG spectra I Influence of O/W-emulsifier

- Distinction between Miglyol® 812 and Lutensol® TO 8 is possible
- Lutensol® TO 8 dominates at interface
- Ordered and covering layer of surfactant

✔ Detection of O/W-emulsifier at interface
Characterization of interfaces
Scattering SHG analysis \& Adsorption of Malachite green

Emulsion production: Ultrasound
Dispersed phase: Miglyol® 812 (φ=1 %)
Continuous phase: water + surfactant
Addition of malachite green

- Miglyol® 812 I Texapon® NSO (24 mM, d = 182 nm)
- Miglyol® 812 I SDS (0.3 mM, d = 190 nm)
- Hexadecane I SDS (0.3 mM, d = 180 nm)

✓ Different types of adsorption depending on emulsion properties
?
Surfactant molecules: replacement, binding on, relocation…
Double emulsions - Summary & Outlook

Advantages

- Various different applications
- Preparation with common equipment

Challenges

- Keeping the active inside → stability issues
- No guidelines for process and product development

Analysis of instability mechanisms

- New technical approaches to analyze instability mechanisms and for the characterization of interfaces
- Applicability of analytical approaches shown
- Next steps: screening of different emulsifiers and transfer of gained knowledge to real systems
We create chemistry