CRYSTAL ENGINEERING APPROACHES FOR THE DESIGN OF FOOD AND PHARMACEUTICAL FORMULATIONS

Dr Elena Simone

Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom

<u>*e.simone@leeds.ac.uk</u>

Formative formulation 18th March 2019 University of Cambridge, Cambridge, UK

Overview of the presentation

Crystal engineering: motivation and some experimental strategies

Engineering crystals for the complex soft food structures

- Multiphase formulations for food and pharma applications
- Particle stabilization (Pickering)
- Crystal properties and implications for Pickering particles

Modelling Methodology

- Model compound: quercetin and its hydrates
- Attachment energy model for the prediction of intermolecular interactions and crystal anisotropy

Results and Discussion

- Bulk intermolecular interactions and surface chemistry for the three quercetin polymorphs
- Experimental techniques for model validation

Conclusions and future developments

FACULTY OF MATHEMATICS AND PHYSICAL SCIENCES

Main crystal properties

□ Size

□ Shape

□ Structure (polymorphs etc.)

Purity

- Same compound but different structures
- Different properties (thermodynamic, kinetics, mechanical, surface)
- Problem with stability when metastable forms are produced

CONTROL IS THE KEY!

How to engineer crystals

The Crystal Engineering Approach utilises the understanding of the **intermolecular interactions** within crystalline materials to design specifically tailored solid materials in terms of *shape, size and polymorphism*

Choice of solvent

Temperature profile Use of additives

Model compound: Ortho-aminobenzoic acid (OABA)

Form I: orthorhombic cell, **zwitterions** and neutral molecules (1:1 ratio)

Form II: orthorhombic cell, dimers of neutral molecules

Form III: monoclinic cell, dimers of neutral molecules

- Three known forms of OABA
- Form I and II are normally nucleated from solution
- Form III is very difficult to nucleate

Equilibrium of OABA in water

Abou-Zied et al., The Journal of Physical Chemistry, 2009

Zapala et al., *Biophysical Chemistry*, **2013**

Equilibrium of OABA in mixtures of water and organic solvents

Murugan et al., *PCCP Communication*, **2011** Abou-Zied et al., *The Journal of physical Chemistry*, **2013**

FACULTY OF MATHEMATICS AND PHYSICAL SCIENCES

Experimental results

In water and IPA mixtures a limiting peak position for UV/Vis and Raman (**benzene ring vibration**) was found over which only form II nucleates

Shape manipulation of succinic acid (SA) via temperature cycling

- SA in water (20 °C saturation temperature)
- Initial cooling from 30 °C to 10 °C at -0.5 °C/min
- Temperature cycling varying heating/cooling rate and cycles' amplitude
- Sampling and off-line analysis (Optical and Raman spectroscopy, single crystal XRD) during the experiments

Experiment n°	Cycles amplitude (°C)	Heating/ Cooling rates (°C/min)	
1	4.5	<u>+</u> 0.3	
2	6	<u>+</u> 0.3	
3	7.5	<u>+</u> 0.3	
4	4.5	<u>+</u> 0.1	
5	4.5	<u>+</u> 0.5	

120 min (cooling)

270 min (heating)

1260 min (cooling)

9

3000 min (cooling)

Face indexing (single crystal XRD)

- The (100) face intercepts chains of succinic acid molecules linked by hydrogen bonded carboxylic acid dimers (polar face)
- Water molecules interact with the (100) face, inhibiting growth along the direction perpendicular to this face
- Temperature cycling generates a diamond shape
- Face (110) and (01-1) outgrow face (100)

Simone et al., Crystal Growth and Design, 2017

Effect of Pluronic P123 on succinic acid crystal shape

 Pluronic P123 inhibit growth of the side faces of the crystal leading to a needle-like shape along the (100) direction

Klapwijk et al., Crystal Growth and Design, 2016

Multiphase formulations: emulsions and foams

- Multiphase formulations are widely used for several applications within the food, cosmetic and pharmaceutical industries;
- Used for oral or topical controlled delivery of poorly water soluble drugs and nutraceuticals;
- Extremely common food structures;
- Common formulations for cosmetic products, fast adsorption and low greasiness;
- They can be thermodynamically unstable and undergo phase separation over time (limited shelflife);
- Reducing the interfacial tension using surfactants or solid particles (Pickering) can improve long term stability.

13

Particle stabilization of multiphase systems (Pickering)

- Pickering formulations are more stable than surfactant based ones because particles adsorb more strongly at the interface;
- Less adverse effects, possibility to use biocompatible, naturally sourced particles (consumer acceptability);
- > The free energy (E) required to desorb a spherical particle from an interface can be expressed as:

 $E = \gamma \pi r^2 (1 - |\cos\theta|)^2$

Where γ is the interfacial tension between the two phases, r is the particle radius and θ is the contact angle.

Particle **stability**, **solubility** and **wettability** are critical properties for Pickering particles!

Faceted crystals as Pickering particles: the issue of anisotropy

Macroscopic crystals of (a) paracetamol, (b) aspirin, and (c) S-(+)-ibuprofen.

Facet	Advancing Contact Angle, θ_n (Deg)					
	Paracetamol Form I	Paracetamol Form II	Aspirin	Racemic Ibuprofen	S-(+)-Ibuprofen	
(201)	38.1 ± 4.6					
(001)	15.9 ± 3.1	$64.5 \pm 3.5^*$	60.7 ± 3.5	68.5 ± 4.8	64.5 ± 3.9	
(011)	29.8 ± 5.7		42.9 ± 4.8	46.9 ± 5.5		
(110)	50.8 ± 4.9	16.6 ± 1.4	-		48.4 ± 4.0	
(010)	67.7 ± 2.5*	17.9 ± 2.5	-			
(100)			52.9 ± 2.5*	$77.2 \pm 4.0^{*}$	$70.7 \pm 3.1*$	

*Bolded data are values for the weakest attachment energy facet. (---) indicates that no such facet was present in the macroscopic crystal.

- Most solid particles are not spherical but they are faceted;
- Different composition and surface chemistry on each face;
- Anisotropy can affect Pickering stabilization!

Molecular modelling for crystal properties prediction

- The intermolecular interaction energies within the crystal structure can be calculated using an interatomic potential (Momany);
- The calculated interactions can be ranked based on their contribution to the total lattice energy;
- The Attachment Energy Model identifies which intermolecular interactions contribute to the growth of the specific crystal faces (*hkl*);
- Assumes a slice of d_{hkl} thickness added to the surface and the energy of the interactions between the new slice and surface proportional to growth rate;
- The chemistry of the interactions dominating the growth of a particular surface (e.g. H-bonding, dispersive etc.) can give an indication of crystal properties.

Momany et al. (**1974**) JACS Rosbottom *et al.* (**2015**) *CrystEngComm*

 $E_{crystal} = E_{slice} + E_{attachment}$ $E_{attachment} \propto Surface Growth Rate$ ¹⁵

Model compound: quercetin

- Quercetin is **flavonoid** molecule found in fruits and vegetables;
- It is known to be an antitumor agent and to exhibit antiallergic, anti-inflammatory and antioxidant activity;
- Due to the wide range of health benefits, quercetin finds use in nutraceuticals and food supplements;
- Three different structures: anhydrous (QA), monohydrate (QMH) and dihydrate (QDH);
- □ Poorly soluble in both water and oil → good candidate particle for Pickering water in oil emulsions.

UNIVERSITY OF LEEDS

Molecular modelling methodology

- The crystal structures of the three quercetin polymorphs were retried from the Cambridge Crystallographic Data Centre (CCDC);
- The Mercury software was used to image each calculated intermolecular interaction;

The **Habit 98** software (developed in Leeds), was used to predict strength, directivity and dispersive nature of the intermolecular interactions in the crystal structure (Momany force-field);

QA structure and main intermolecular interactions in the crystal structure

- First strongest interaction (38.4% of lattice energy): Hydrogen bonds between OH groups and permanent dipole-dipole interactions
- Second strongest interaction (25.8% of lattice energy): Zig-zag chain structure formed by hydrogen bonds between OH groups and permanent dipole-dipole interactions
- Third strongest interaction (14.1% of lattice energy): Permanent dipole-dipole interactions from COOH groups, dimers arrangement

QMH structure and main intermolecular interactions

 First strongest interaction (24.5% of lattice energy): π-π stacking interactions between quercetin-quercetin molecules

- Second strongest interaction (10.2% of lattice energy): double hydrogen bonding interaction between two quercetin molecules
- Third strongest interaction (9.8% of lattice energy): hydrogen bonding between quercetin-water molecules

QDH structure and main intermolecular interactions

2

- First strongest interaction (37.8% of lattice energy): π-π stacking interactions between quercetin-quercetin molecules, uninterrupted stack
- Second strongest interaction (7.9% of lattice energy): hydrogen bonding interaction between water and quercetin molecules
- Third strongest interaction (3.5% of lattice energy): permanent dipole-dipole interaction quercetin-quercetin (dimer)

FACULTY OF MATHEMATICS AND PHYSICAL SCIENCES

QA calculated morphology and face specific surface chemistry

FACULTY OF MATHEMATICS AND PHYSICAL SCIENCES

QMH calculated morphology and face specific surface chemistry

Faces 002 / 00-2, ε_{hkl} =85.6%, Dominant surface Quercetin-quercetin double H-bonding between – OH and C=O groups, no interaction with water molecule, Polar interactions

Faces 11-1 / 1-1-1 / -111 / -1-11, $ε_{hkl}$ =32.7%, Faces 110 / 1-10 / -110 / -1-10, $ε_{hkl}$ =31.2%, Faces 011 / 0-11 / 01-1 / 0-1-1, $ε_{hkl}$ =27.5%, Non-Dominant surfaces Apolar π-π stacking interactions, hydrogen bonds between quercetin-quercetin and quercetin-water

Faces -102 / 10-2, ε_{hkl} =58.2%, Dominant surface Hydrogen bonding between quercetin-quercetin and quercetinwater, polar interactions

Faces 100 / -100, ε_{hkl} =69.6%, Dominant surface Quercetin-quercetin H-bonding between –OH groups, no interaction with water molecule, mostly polar interactions

FACULTY OF MATHEMATICS AND PHYSICAL SCIENCES

QDH calculated morphology and face specific surface chemistry

Experimental validation

- Face specific wettability can be measured via
 contact angle and single crystal XRD face indexing;
- This information is NOT enough to understand the effect of crystal anisotropy;
- Advance imaging for better understanding of interface orientation and interaction.

Confocal Coherent Anti-Stokes Raman Scattering

Polarized optical microscopy: orientation at interfaces

X-ray tomography

Confocal Microscopy

Conclusions and future work

- Molecular modelling using the Attachment Energy Model is a promising tool to estimate face specific chemical properties of biocompatible crystals;
- These information can help in the design of tailor made crystals for **Pickering stabilization**;
- Experimental validation is still needed (advance microscopy, contact angle, single crystal XRD face indexing);
- Better understanding of the relation between crystal anisotropy and orientation at the interface is necessary for efficient particle design.

Acknowledgements

Thank you for the attention!

PhD students: Mr Panayiotis Klitou Mr Lorenzo Metilli **Collaborators:** Dr Ian Rosbottom

UNIVERSITY OF LEEDS