Rheology and characterisation of Sugru mouldable glues (RTV-1 silicone elastomer putty)

Dr Vivian Christogianni Senior Formulation Chemist FormFormForm Ltd <u>vivianchristogianni@sugru.com</u>

18 March 2019 Maxwell Centre, University of Cambridge

Sugru

Mouldable Glues

Follow Sugru all over the place

About me..

Senior Formulation Chemist

Jan 2019 – Present • Committee Member

The Institute of Materials, Minerals and Mining

Dec 2018 – Present

Professional Graduate (ProfGradIMMM)

Agenda

Background info

Formulation of mouldable adhesives

Typical characterisation techniques vs. rheology

Collaborations with Academia and External Partners

Summary

Future work

Jane's Story

THE INVENTION OF SUGRU WAS A HAPPY ACCIDENT. IT LANDED IN THE HANDS OF A YOUNG WOMAN WITH DREAMS FOR A SMARTER WORLD.

We invented Sugru Mouldable Glues to get a new generation fixing, making and improving stuff

Mouldable Glue 1-part RTV, highly filled silicone adhesive composite

Why RTV-1 silicone adhesive putty?

Sugru sticks permanently to lots of materials like glass, ceramic, wood, metal and plastics*.

You have 30 minutes to fix, build and create.

In 24 hours, it turns into a strong and durable silicone rubber that stays stuck.

Easy to use

Bond shapes that don't fit.

Unlike conventional glues that require two flat surfaces, you can make strong, Boxible joins between all sorts of shapes, uneven surfaces and contrasting materials.

No mess, no stress

Liquid glues occe, drip and get all over your hands. With Sugra mouldable glues, they stay where you put them – you're in control. Simply wipe your hands clean with dry listua paper.

F

Rebuild missing pieces

When things stop working, it's often because key parts are cracked, wern or even mesang. Thanks to its physical balk and mouldability. Sugnu allows you to fill gaps, holes and rebuild parts. It can be used to create 3D parts such as mesang subbor feet, replace were knobs and handles, and add strength and flexibility to filmey cables.

1

So reach move than sticking things together

Thanks to their car mouldable gives a second second fining broken and s

Applications

Characteristics

Identify what needs to be tested and why?

Sugru's testing (before rheology)

Formulating an RTV-1 silicone adhesive putty^{Mouldoble Glues}

RSC article: "Freeing a world of fixers: Sugru", September 2014

https://www.chemistryworld.com/news/freeing-a-world-of-fixers/7703.article

Definitions

Uncured state

putty, mouldableadhesive, glue

Cured state

- silicone elastomer
- flexible rubber

Sugru's first 24 hr testing (before rheology)

Plasticity for mouldable glues

Plastometer

Williams plasticity technique – ASTM D926 Quantitative method for mouldability

Higher plasticity \rightarrow harder to knead consistency Lower plasticity \rightarrow softer to knead consistency

Macroscopic phenomenon - Plasticity harder New materials: Effect of filler Williams plasticity (mm) morphology **Process:** Fillers dispersion – overdispersion or agglomeration User experience: How hard it is to knead softer Mouldable putty Modelling clay Playdough Shelf-life: Increase as product cures in the pack

Learnings from plasticity

Sugru's first 24 hr testing

Hardness = resistance to indentation

Hardness for silicone rubbers

Sugru's first 24 hr testing

Rheology

Filled system

- Tackiness Pull-off test method
- Working time Monitor changes in tackiness
- Cure depth Different environmental conditions

Unfilled system

- Quality Control Polymer grade
- Reactivity of the system Cure time profile, Modulus increase
- Stability of the system Proof of end-capping polysiloxanes
- Physical properties chain polymer length

Rheological case studies

Filled system

- Tackiness Pull-off test method
- Working time Monitor changes in tackiness
- Cure depth Different environmental conditions

Unfilled system

- Quality Control Polymer grade
- Reactivity of the system Cure time profile, Modulus increase
- Stability of the system Proof of end-capping polysiloxanes
- Physical properties chain polymer length

Rheological case studies

Sugru Mouldable Glues

Cure time profile

- Gel point or Modulus increase
- Reactivity of silanes
- Stability ageing

Gel test

Gel test

- A linear chain extension of chains involved by formation of catalyst's ligand groups and polymer bonds.
- Decrease in functionality to 2 (from 3 or more)
- Polymer-catalyst bonds not stable with time.
- Polymer-catalyst bonds highly sensitive to hydrolysis. [1]

[1] Laura Comaills-Autin, Philippe Cassagnau, Anne Seggio, Aurélie Mondière, Roger Spitz, Vincent Monteil, Investigations on interactions between titanium alkoxides and α,ω-dihydroxy PDMS by a combination of rheology and spectroscopy, European Polymer Journal, Volume 57, 2014, Pages 37-46

Gel test

Rearrangement of the polymer chains

very thick mixture

Chain scission

Risk of incomplete functionalisation of the polymer

Risk of lumps and difficulty during discharge due to

Risk of the batch being low plasticity, sticky to handle

٠

٠

٠

٠

٠

٠

٠

Higher viscosity

Lower viscosity

Simple viscosity measurements

Sugru Mouldable Glues

Simple viscosity measurements

- Rearrangement of the polymer chains
- Higher viscosity
 - Risk of incomplete functionalisation of the polymer
 - Risk of lumps and difficulty during discharge due to very thick mixture
- Lower viscosity
 - Chain scission [2]
 - Risk of the batch being low plasticity, sticky to handle

Pull-off test

 Tack is the ability of a material to adhere instantaneously to a solid surface when brought into contact by a very light pressure

• Working Time: the amount of time from when the adhesive has set, to the time it will no longer bond.

Pull-off test

QUANTIFY THE TACK OR "STICKINESS" OF A FORMULATION MONITOR THE NORMAL FORCES

SUBJECTIVE LABORATORY TEST

Pull-off test

MONITOR WORKING TIME

REFLECTED TACK BETWEEN THE SAMPLE AND THE MATERIAL OF THE TOP GEOMETRY

NOT MUCH INSIGHT INTO THE MECHANISMS THAT CONTROL TACK BEHAVIOR

Sugru's first 24 hr testing

Sugru's testing

Adhesion methods

• Lap Shear (ASTM D1002)

Cleavage (ASTM D1062)

• Tensile (ASTM D2095)

Entanglement gives strong adhesion [3]

- Short-chain polymers and some specific types of polymers even with long chains have no tangles
 - Very easy to "open up" via abrasion (or with a bit of solvent) so particles are easily removed

 It is very hard to open them up because trying to move one part of a chain is resisted by the tangles

Entanglement is strong

Lap shear method

 Adhesive strength – Lap Shear (ASTM D1002)

Lap Sheet Strength (Nom!)

ESTING . INNOVATION .

 SOLUTIONS since 1984

External collaborations

Summary

Unique properties and applications of silicone adhesive formulations

Soft consistency, hand mouldable, no sagging, retains its shape while curing Filling gaps, complex irregular shapes No drilling, controlled texture/finish applications Non corrosive by-product, customised

hardness, chemical, temperature and weathering resistant

Shock absorbing, flexible joints

Characterisation methods for enduser applications of silicone glues.

> Plasticity Hardness Tensile strength

Rheology

Reactivity of the system Stability of the system Chain polymer length Tackiness Working time Cure depth

Adhesion

Important property for new formulations.

Adhesion & Cohesion Start with Tangles

Sugru - Excellent bonding to various organic and inorganic substrates

Future work in FormFormForm R&D

The Fixer's Manifesto

From the makers of Sayn Bastrates by Arimade

And if it doesn't exist. make it.

Resist needess brenis and upgraded.

Nurture curiosity

If its broken,

1UP

1.011

Give your stuff a longer life

Embrace the

STUFF WE HAVE.

fixited

Share your ident.

If it's not broken,

improve it.

Disponsibly is a chaice.

A free thing is a beautiful thing

Pixing it good.

FormFormForm Ltd

Mouldable Glues

Thanks for listening!

Dr Vivian Christogianni Senior Formulation Chemist

FormFormForm Ltd, Unit 2, 47-49 Tudor Road, London, E9 7SN, UK Tel.: +44 (0)20 32225210 E-mail: <u>vivianchristogianni@sugru.com</u> Website: <u>www.sugru.com</u>