Johnson Matthey Inspiring science, enhancing life

Characterising Your Formulations! Formative Formulation Conference 18th March 2019

Dr Emily Summerton, Johnson Matthey

Contents

The Power of Characterisation

Formulation Strategy

Hansen Solubility Parameters

Particle Size and Shape

Electron Microscopy

The Power of Rheology

A Global Footprint

14,000 employees worldwide

North America

12 major manufacturing facilities
33% of Group sales*
24% of employees

Europe

14 major manufacturing facilities
39% of Group sales*
53% of employees

Rest of World

5 major manufacturing facilities
9% of Group sales*
5% of employees

🜔 China

5 major manufacturing facilities
10% of Group sales*
8% of employees

Rest of Asia

6 major manufacturing facilities
9% of Group sales*
10% of employees

Investing in Science

R&D investment

£ millions

11%

of employees working in R&D

R&D investment at **~ 5 %** of sales*

Global Markets

JM

Formulation Strategy

1) Many different components are present in our formulations – e.g. actives, binders, polymers, solvents

2) Compatibility is key for successful formulations

- 3) Determine a solvent or solvent mixture suitable for all components
- 4) Determine if the properties such as **particle size**, **shape**, **viscosity** are within the **target** specification for the application

Determining a Suitable Solvent

δD

δΗ

δΡ

particulate materials

3 components:

Hansen solubility parameters are used to determine the

suitability of a solvent for dissolution or dispersion of

Dispersion

Polar

Hydrogen bonding

Particle Sizing – Importance of Solvent Choice

- Select solvent which is most representative of the process
- Compatibility between particulates and medium determines dispersion properties
- Perform 5 replicates at least!

Particle Sizing - Presence of Aggregation

JM

Particle Shape

Particle Shape Output

JN

- > > 30 parameters
- Percentiles
- Percentage of particles in a desired range
- Thumbnail images
- Minimise cluster rejection

12

Limit fibre width 1-6 microns

Electron Microscopy

- TEM and SEM complements size and shape techniques
- Morphological detail
- Location of components by EDX analysis

The Power of Rheology

Viscoelastic properties!

Additional Techniques

- Surface tension
- Small angle scattering
- Zeta potential
- Thermal analysis

Apply a range of different techniques

Improved technical understanding of your formulation and process

Turning Science into Customer Solutions

Using world class science and technology to solve complex problems for our customers

Thank You! Any Questions?