Force distribution and contact network analysis of sheared dense suspensions

Ranga Radhakrishnan, J. R. Royer, W. C. K. Poon, and J. Sun

Formative Formulation, University of Cambridge March 18, 2019

EP/N025318/1

Dense suspensions of particles

Ceramics

Drilling muds

Paints

Cements

Shear thickening of model systems

Universality of shear thickening in colloidal and non-Brownian model systems. – Guy, Hermes, Poon PRL 2015

Mechanism of shear thickening

[1] Fernandez et al., PRL 2013, [2] Seto, Mari, Morris, PRL 2013, J. Rheol. 2014, [3] Wyart and Cates, PRL 2014 [4] Guy, Hermes, Poon, PRL 2015, [5] Lin et al, PRL 2015, [6] Royer, Blair, Hudson, PRL 2016, [7] Clavaud et al PNAS 2017, [8] Comtet et al, Nat. Comm. 2017

Discrete Element Method Simulations

Ness and Sun, PRE 2015

Non Brownian particles

Linear (Hooke) spring force

Coulomb criterion $F_t \le \mu F_n$ Imposed shear rate $\dot{\gamma}$

LAMMPS (Sandia)

Hydrodynamic forces

Regularised lubrication Stokes drag

Model of shear thickening

[1] Mari, Seto, Denn, Morris, PRL 2013, J. Rheol. 2014 [2] Wyart and Cates, PRL 2014[3] Ness CJ, and Sun J, Soft Matter 2016 [4] Clavaud et al PNAS 2017, [5] Comtet et al, Nat. Comm. 2017

Fraction of frictional contacts $f(\sigma)$

Theory for shear thickening

DEM simulations for a microscopic understanding

Contact Force Network

Coordination number Z and viscosity divergence

Soft Modes $\Delta Z = Z_m - Z$ $\eta_r \sim \Delta Z^{-p}$ For $\mu \rightarrow 0$ p = 2.1 (2D) p = 2.7 (3D) [1] $(Z_m(\mu) - Z) \sim (\phi_m(\mu) - \phi)$ Assumed to be true for all μ 3 [2]

[1] Lerner, During, and Wyart, PNAS 2012[2] Wyart and Cates, PRL 2013

Coordination number deficit ΔZ for $\mu \rightarrow 0$

$$132 Z = 2$$

Lerner, During, and Wyart, PNAS 2012 Wyart and Cates, PRL 2013

Critical contact number and volume fraction

[1] Edwards and Oakeshott, Physica A 1989, [2] Sun and Sunderesan J. Fluid Mech. 2011[3] Silbert, Soft Matter 2010

Contact number deficit ΔZ vs. distance to jamming

Normal contact force probability distribution $P(\theta)$

[1] Mueth, Jaegger and Nagel Phys. Rev. E 1998,

[2] Blair, Muggenberg, Marshall, Jaegger and Nagel Phys. Rev. E 2001

$P(\theta)$ for varying ϕ

[1] Mueth, Jaegger and Nagel Phys. Rev. E 1998,

[2] Blair, Muggenberg, Marshall, Jaegger and Nagel Phys. Rev. E 2001

 $P(\theta)$ for varying stress σ

[1] Mueth, Jaegger and Nagel Phys. Rev. E 1998,[2] Blair, Muggenberg, Marshall, Jaegger and Nagel Phys. Rev. E 2001[3] Ness and Sun, Soft Matter 2016

Contact force distribution to frictional contacts

Guy, Hermes and Poon PRL 2015

Conclusions

- $\phi_m(\mu)$, $Z_m(\mu)$ and $P(F_n)$ of suspensions are similar to granular packings, and sheared granular materials
- Justified $f(\sigma) \sim \exp(-\sigma^*/\sigma)$ in the Wyart-Cates model
- Contact number deficit, $Z_m(\mu)$ –Z, does not explain viscosity divergence and linear interpolation for the jamming volume fraction ϕ_I

Future Work

3

- Network properties: 3 cycles, efficiency etc. to understand the dynamics of shear thickening
- Use connections with granular materials to build better models

Thanks

Dense suspension team @ Edinburgh

Dr. J.P. Morrissey

Mr. Yang Cui Rheology of non-Brownian suspensions composed of frictional and frictionless particles