Practical challenges in the use of biodiesel

Siobhan Casey

14th April 2010 University of Birmingham

Black and Green? Carbon Footprint and Sustainability for Formulations

Biodiesel

Innospec

- Biodiesel
- Challenges
 - Cold flow
 - Oxidative stability
- Conclusions

Innospec consists of three business units

Innospec

Fuel additives

- Wax anti-settling additives
- Antifoam additives
- Anti-valve seat recession additives
- Pipe line drag reducing agents
- Diesel detergency additives
- Demulsifiers
- Diesel additives
- Lubricity Improvers
- Anti-static additives

- Diesel stabilisers
- Anti-icing additives
- Corrosion inhibitors
- Combustion chamber deposit modifiers
- Metal deactivators
- Anti-oxidants
- Dyes
- Lead anti-knock additives
- Cetane improvers

Biodiesel

FAME – fatty acid methyl ester

Feedstock

	Lauric acid	Myristic acid	Palmitic acid	Stearic acid	Oleic acid	Linoleic acid	o⊱Linolenic acid
	C12:0	C14:0	C16:0	C18:0	C18:1	C18:2	C18:3
Palm oil			44	5	39	10	
Soya bean oil			10	4	23	51	7
Rape seed oil			4	2	61	21	9
Coconut oil	48	19	9	3	6	2	
Tallow oil		3	26	14	47	3	1

Typical % values of fatty acids in oils

Blends of oils are common

Biodiesel feedstock

Triglyceride

Methanol (3)

Glycerol

Methyl Esters (3)

Transesterifcation of fats

FAME melting points

Biodiesel - challenges

- Low temperature operability
- Oxidative stability

At low temperatures the fuel should still flow

Measured by the pour point

- The fuel must also pass through the fuel filter
 - Measured by the cold filter plugging point

Cold filter plugging point

specialty chemicals

Rape methyl ester CFPP ~ -14C

CFPP of diesel containing 5% biofuel

Rape > Soy >Palm

Biodiesel - challenges

- Low temperature operability
- Oxidative stability

Oxidative stability

Taken from "Analysis of Oxidative Deterioration of Biodiesel Fuel" Ogawa T., Kajiya S., Kosaka S., Tajima I. and Yamamoto M. SAE 2008-01-2502

Rancimat

European Standard 14214: Six hours

Oxidative stability

ospec

specialty chemicals

Conclusions

- Two of the major technical obstacles to widespread acceptance of higher FAME use are;
 - stability of the FAME and FAME blends
 - the low temperature operability issues
- Palm methyl ester shows good stability but poor cold flow properties
- Rape and soy methyl ester show good cold flow and stability properties when treated with additives

