
Introduction

Organic coatings are amongst the most popular
and efficient means for the protection of metallic
surfaces [1]. However, the production of these
coatings is fundamentally dependant on petroleum
resources, resulting in materials with slow degradation
rates that accumulate as environmental pollutants [2].
Consequently, there is a demand for organic coatings
that are prepared from sustainable/renewable
resources.

Lignin is the second most abundant biopolymer
on earth and is the main constituent of the waste
stream of wood-processing industries [3]. The
combination of lignin and cellulose in composite
films/coatings previously demonstrated promising
barrier performances against water and oxygen
permeation [4, 5].

Following a previous study on the performance of
lignin as an anticorrosion coatings [6], this work
investigated the corrosion protection capability of a
water-borne composite coating based on colloidal
lignin particles (CLPs) and TEMPO-Oxidized cellulose
nanofibrils (TOCN) for galvanized steel [7].

• CLPs with a coalescing characteristic could be prepared.
• Electrophoretic deposition could be utilized for the preparation of aqueous coatings.
• Adhesion of TOCN-CLPs coatings on galvanized steel was affected by TOCN concentration and

deposition potential.
• Coatings provided a relatively long-term corrosion protection for the steel surface.
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Figure 1. SEM micrograph of CLPs after drying on a silicon 
surface. Lignin particles demonstrated spherical morphologies 

and underwent coalescence during drying. 
The coalescence is resulted from the action of the utilized 

solvent (DEGBE).

Figure 2. (a) The schematic of electrophoretic deposition (EPD) 
of negatively charged biopolymers (CLPs shown as brown 
spheres and TOCN as gray lines), and (b) appearance of a 

biopolymeric coating immediately after the EPD process (2.5 cm 
×4 cm dimension of steel substrate).
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Figure 4. EIS Bode plots of coated steel surfaces after 1 day (a) and 15 days (b) of immersion in 3.5 % NaCl.

Sample 1 day immersion 15 days immersion

HDG steel 0.9 0.2

0.1 T–0.5 V 27.0 6.0

0.2 T–3 V 34.0 13.7

Table 2. Charge transfer (Rct, kΩ·cm2) values obtained from fitting of 
EIS data.

Figure 3. Optical microscopy images of coated steel after cross-cut adhesion measurements. (a) Coatings deposited at 
0.5 V with 1 g/L TOCN concentration (0.1 T–0.5 V), and (b) at 3 V with 2 g/L TOCN concentration (0.2 T–3 V).
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Conclusions

Sample Mass (g/m2) Thickness (µm)

0.1 T–0.5 V 4.8 ± 0.4 1.3 ± 0.4

0.2 T–3 V 22.7 ± 1.8 5.3 ± 0.6

Table 1. Dried mass and thickness of coatings.
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