

Powder spreading in additive manufacturing

Sina Haeri

James Weir Fluid Lab Mechanical and Aerospace Engineering University of Strathclyde

HIP IN ENGINEERING

Powered by EDCC

Outline

- Overview of Additive Manufacturing Technologies
- Powder based AM
 - Types of powder and
 - Challenges and opportunities
- Process modelling
 - Background
 - Impact of process parameters
 - Geometric optimisation of the spreader
 - Particle shape effects
 - Impact of liquid bridge and moisture content
- Conclusions

Additive Manufacturing

- An umbrella term encompassing a wide range of manufacturing techniques
 - Also referred to as 3D printing
 - Solid objects are built layer-upon-layer
- Additive manufacturing process
 - Producing a CAD model of the final part
 - Model manipulation and conversion to STL
 - Choose appropriate printing technology
 - Product size, precision, cost and type of material
 - Extraction and post processing
 - Detachment from the build plate and/or build material

Benefits of AM

- Low volume production
 - Mass-customisation rather than mass-production
- Complex designs
 - No (almost) geometrical limitation in design
 - increase product functionality and performance
- Lower environmental impact
 - By using material efficiently
 - By increasing part functionality and efficiency
- Economic impact
 - New supply chains and business models
 - A fast growing industry by itself

AM Processes

- Powder Bed Fusion
 - Widely used to produce final parts (Direct production rather than rapid prototyping)
 - High strength and stiffness
 - A wide range of available post-processing techniques allows for smooth finish
 - Challenges
 - Powder handling
 - Internal Porosity and shrinkage/distortion

AM Processes

- Material Deposition
 - Blown Powder
 - Large scale, metallic powder
 - Particularly useful for coating
 - Support structure required
 - Extrusion Processes
- Other technologies
 - Material Jetting
 - High quality prototypes
 - Brittle mechanical properties
 - Vat photo-polymerization
 - Small scale applications with fine details

Powder Bed Fusion

- Research Directions¹
 - Calibrated and validated models
 - Particle scale simulations: Discrete Element Method (DEM)
 - Effect of particle shape, size and size distribution
 - Flowability, Spreadability and Segregation
 - To relate part requirements to powder layer characteristics
 - Powder recycling and handling
- Opportunities and Challenges
 - DEM modelling can potentially reduce the cost of AM but
 - size and shape distribution need to be included
 - Liquid-bridge, van der Waals and Contact cohesion
 - Interstitial air effects (Perhaps!)
 - Should be used for machine and spreader design
 - Reduced-order modelling of DEM data

Shape/Size distribution

University of Strathclyde Engineering

- Why consider non-spherical particles?
 - Better predictability
 - High Production Costs
 - Gas, Plasma and Plasma rotating electron atomised processes
 - Usually only available for metals

- For new material shape irregularities are a rule!
 - Polymeric powders

Outline

- Overview of Additive Manufacturing Technologies
- Powder based AM
 - Types of powder and
 - Challenges and opportunities
- Process modelling
 - Background
 - Impact of process parameters
 - Geometric optimisation of the spreader
 - Particle shape effects
 - Impact of liquid bridge and moisture content
- Conclusions

Numerical Modeling

- Standard DEM
 - Simulations based on LAMMPS and LIGGGHTS
 - Spring-Dashpot/Hertz Model
 - Model Parameters set according to Di Renzo¹
 - Rolling Friction
 - Clumped-Sphere Approach for non-spherical particles
 - About the simulations
 - ARCHER (T-1 facility) and Cirrus (T-2 facility)
 - Domain Decomposition and Load Balancing
 - Typical simulation: 20-hours on 96 cores.

Simulation Set-up

– Particle Shapes

Initialisation using a Rainfall technique¹

Simulation Set-up

– Particle Shapes

Initialisation using a Rainfall technique¹

Simulation Set-up

- Simulation set-up to scale
 - Blade and Roller Tested

Post-processing

University of Strathclyde Engineering

- Post processing
 - Calculation of bed volume fraction (good compactions, uniformity and no cracks)
 - Calculation of bed surface roughness (wrinkles)
- A section of the bed is used for the post processing

Volume fraction calculation: Voronoi TessellationSurface Roughness: Ray Tracing

The Process Parameters Impact¹

The Process Parameters Impact¹

The Process Parameters Impact¹

Particle Alignment

- Spreader Speed
- Bed thickness
- Aspect ratio0.3- Isotropic distribution0.28- $Pr(\zeta < |20|) = 0.06$ $\bigcirc^{0.26}$

Initial Distribution (After Rainfall)			
Ar	1.5	2.0	2.5
$\Pr(\zeta < 20)$	0.088	0.097	0.11

Size/Shape Segregation

- Can the bed volume fraction be controlled by controlling particle shape distribution
 - Shape/Size segregation

Rainfall technique

- Some recent publication suggest using a tuned rainfall technique to generate the bed
 - Initial condition to other simulators for other stages of process
 - Provide some understanding of bed behaviour
 - The spreading process significantly impacts the microstructure of the powder
 - The microstructure impacts other stages of the process

Neck Growth rates

Blade Geometry Optimisation¹

- Blades are less efficient than rollers
 - Related to spreaderparticle contact dynamics
 - Geometric problem

$$\left|\frac{y}{a_s}\right|^{n_s} + \left|\frac{z}{b_s}\right|^{n_s} = 1$$

¹ Haeri, Powder Technology, 321 (2017) 94-104

Effectiveness of the Design

- A mixture of rod-shaped particles is considered.
 - 50 combinations of a_s , b_s and n_s are tested

Effectiveness of the Design

- A mixture of rod-shaped particles is considered.
 - 50 combinations of a_s , b_s and n_s are tested

- Is the new design still effective for realistic particle shapes
 - An improved multi-sphere approximation method¹ based on Li's²

- Is the new design still effective for realistic particle shapes
 - An improved multi-sphere approximation method¹ based on Li's²

¹ Haeri, Powder Technology, 321 (2017) 94-104 ² Li et al. Powder Technology 286 (2015) 478–487.

- Is the new design still effective for realistic particle shapes
 - An improved multi-sphere approximation method¹ based on Li's²

¹ Haeri, Powder Technology, 321 (2017) 94-104 ² Li et al. Powder Technology 286 (2015) 478–487.

- Is the new design still effective for realistic particle shapes
 - An improved multi-sphere approximation method¹ based on Li's²

Comparison with the Roller

Selected Particle Shapes

- Mixed With Equal Proportions
- Mean sphericity of roundedness is preserved

Powder Moisture Content

 Similar approach, using actual blade geometry

- Seems drier powder generally behaves better
 - Interstitial gas effects for dry powder

Summary

– AM and Powder Bed Fusion

- Economical impact
- Technological advancement
- Complexity of the Process
 - High-fidelity simulations
- Discrete Element Method
 - Device-scale simulations are feasible
 - Better understanding of the process
 - Assist in development of new designs and processes optimisation
 - Providing accurate initial conditions for further simulations
 - Full simulation of the spreading process required.
 - May still be too expensive to be used on the shop floor
 - A reduced-order modelling techniques may be applied to DEM data

Thank you for your attention! Questions?