Influence of Interparticle Forces on Powder Behaviour

Martin Rhodes

MONASH University

RSC Meeting
Capillary Forces
Due the presence of liquid → liquid bridges
Capillary condensation from a vapour,
Or by addition of non-volatile liquid.

Static component by Kelvin and Laplace-Young equations

Roughness scale rather than particle size may dictate the capillary forces.

Also a dynamic component important in some cases.
Interparticle Forces

Van der Waals Forces
- Forces arising between molecules
- Always present
- Decay as separation squared

\[F_{vdw} = \frac{AR}{12a^2} \]

\(R \) depends on surface roughness rather than particle diameter

Hamaker constant , \(A \), dependent on the material
Interparticle Forces

Electrostatic Forces

- Tribo-electric charging of the particle surface
- Repulsion between like charges
- Attraction between opposite charges
- Both can change powder behaviour

In mixtures of sizes, smaller particles gain opposite charge to larger particles

Important at low humidities with non-conducting particles

\[F_e = k \frac{|q_1||q_2|}{r^2} \]
Interparticle Forces

Relative magnitudes
Other forces considered here

Magnetic Forces
Here concerned with iron or iron containing particles in an externally imposed magnetic field.
Field in different directions. Key features: dipoles, dominant direction, potential for chain formation, cancelling effect occurs

Friction Forces
Note that recent findings show that increase in cohesive force causes increased friction and reduces relative motion of particles.
Porosity of Randomly Packed Spheres

Forsyth et al, 2001:
- Experiments with iron particles in a magnetic field
- Calculation of van der Waals forces

Porosity:
- Increases with increasing interparticle force (IPF)
- Governed by IPF/particle wt. (Bond number Bo)

Yu et al, 2003:
- Confirmed this result for van der Waals forces and capillary forces
- Added an empirical expression for porosity:

\[\varepsilon = \varepsilon_0 + (1 - \varepsilon_0) \exp(-mB_o^{-n}) \]

Porosity with zero IPF

Porosity of Randomly Packed Spheres

Lumay et al, 2009:

Iron particles in a magnetic field:
Confirmed porosity is a function of Bond Number

Schella et al, 2017:

Using controlled electrostatic forces with PTFE spheres:
Confirmed the trend of porosity increase with increasing Bond No.
Angle of Repose

Forsyth et al, 2001:
Rotating drum with iron spheres in a variable magnetic field

Showed **static and dynamic** angle of repose (AOR) increase linearly with Bo

Lumay and Vandewalle, 2010:
Confirmed AOR results by experiments (magnetised particles)

Fasekas et al. 2005:
Confirmed AOR results by simulation of magnetised particles

Taylor et al. 2008:
Explained why, for magnetic systems, this effect is much less than as expected (magnetic cancelling effect)
Angle of Repose – Flow Behaviour

Forsyth et al, 2002:
Using two systems:
§glass spheres in humidity-controlled air
§iron spheres within a magnetic field
showed that the transition from free-flowing to stick–slip behaviour occurs at a critical ratio of IPF/particle weight (Bo)

AFM measurements showed force increased monotonically.

Xiang-Yun Lu et al., 2017:
Dry powder inhaler study:
Optimal relative humidity for promoting powder flow and dispersion dependent on the balance between the electrostatic force and the capillary force.
Fluidization

General trend:

- **A**: Non-bubbling range \((U_{mf} \text{ to } U_{mb})\)
- **B**: Bubbling only
- **C**: Channelling, \(\Delta P < \text{buoyant weight}\)

Geldart’s classification of powders

Evidenced by capillary forces, magnetic forces, van der Waals forces.
Molerus, 1982:
Suggested ratio of IPF/wt determines the BA and AC boundaries in Geldart’s classification:

This result supported by many others, but values at boundaries vary.

Examples:

<table>
<thead>
<tr>
<th>System</th>
<th>IPF/wt at BA</th>
</tr>
</thead>
<tbody>
<tr>
<td>van der Waals estimation (particle radius)</td>
<td>6</td>
</tr>
<tr>
<td>van der Waals estimation (asperity radius)</td>
<td>0.3-0.5</td>
</tr>
<tr>
<td>DEM simulation</td>
<td>1.0</td>
</tr>
<tr>
<td>Added non-volatile liquid</td>
<td>0.02-0.06</td>
</tr>
<tr>
<td>Magnetic</td>
<td>2.5</td>
</tr>
</tbody>
</table>
AC Boundary

Values of Bond number vary considerably (0.43 to 47) depending on the system and researchers

However, main conclusion:
Both BA and AC boundaries seem to be governed by critical Bond number.

Although:
Simulations suggest that A behaviour can occur in the absence of imposed IPF (Pandit et al., Galvin et al., Rhodes et al.)

Support for Foscolo and Gibilaro theory (1984, transition based on hydrodynamics alone)

Galvin et al., AIChEJ, 2014, Vol.60(2).
Pandit et al., Powder Technology, Vol. 160, 1
Surprising Effect of Interparticle Forces

Hornbaker et al., Nature, 1997:
Static angle of repose in 0.8mm glass beads changes linearly from 25 to 35 degrees with oil layer thickness changing from 5nm to 30nm

Vandewalle et al., 2012:
Packing fraction of 1mm particles affected by relative humidity (RH).
"A remarkable result"

Mobility of particles changes with humidity - low for very low and very high RH - highest around 45% RH.
Surprising Effect of Interparticle Forces

Yang, 2006, Brazil Nut Effect:
DEM simulation with simplified liquid bridge forces.
Found that small addition of liquid causes large change in rise rate of intruder.

Rhodes et al, 2003, Brazil Nut Effect:
Order of magnitude change in rise speed of 25mm steel intruder in a bed of 1mm glass beads as RH changed.

High RH (capillary condensation) and high electrostatic charge (at low RH) each had the effect of slowing the rise rate. Maximum rise rate at 55% RH.
Ratio of interparticle force to particle weight (Bo) important in determining powder behaviour.

Changes in behaviour often governed by critical values of Bo.

These critical values of Bo not associated with step changes in the nature of the forces.

Humidity plays an important and surprising role in influencing behaviour of granular systems:

- Low humidity → electrostatic forces
- High humidity → capillary forces
- Optimum humidity for good flow, dispersion etc: 50-60%

Deserving of much further research