

Stability of Biopharmaceuticals: Past, Present and Future

Paul Varley,

Vice President,

Biopharmaceutical Development

Agenda

The last 20 years or so

Where we are now

The future

Early Process - THEN	Current Platform – NOW
75 mg/L fermenter yield	5-10+ g/L fermenter yield
50% purification yield with 9 step process	>75% purification yield with 4 step process
1 mg/mL formulation	100+ mg/mL formulation

Progress

Rank	Product	Company	Technology	WW Sales (\$m)
1	Avastin	Roche	Monoclonal antibody	9,232
2	Humira	Abbott & Eisai	Monoclonal antibody	9,134
3	Rituxan	Roche	Monoclonal antibody	7,815
4	Enbrel	Wyeth, Amgen & Takeda	Recombinant product	6,583
5	Lantus	Sanofi-Aventis	Recombinant product	6,386
6	Herceptin	Roche	Monoclonal antibody	5,796
7	Crestor	AstraZeneca	Small molecule chemistry	5,739
8	Spiriva	Boehringer Ingelheim	Small molecule chemistry	5,552
9	Remicade	SGP, J&J & Mitsubishi Tanabe	Monoclonal antibody	5,220
10	Gleevec/Glivec	Novartis	Small molecule chemistry	5,136

Rank	Product	Company	Technology	WW Sales (\$m)
1	Lipitor	Pfizer, Astellas & Almirall	Chiral chemistry	13,507
2	Plavix	BMS & Sanofi-Aventis	Small molecule chemistry	9,447
3	Advair	GlaxoSmithKline	Small molecule chemistry	7,828
4	Enbrel	Wyeth, Amgen & Takeda	Recombinant product	6,455
5	Diovan	Novartis & Ipsen	Small molecule chemistry	5,825
6	Rituxan	Roche	Monoclonal antibody	5,481
7	Remicade	SGP, J&J & Mitsubishi Tanabe	Monoclonal antibody	5,293
8	Nexium	AstraZeneca	Chiral chemistry	5,200
9	Epogen/Procrit	J&J, Amgen & Kirin	Recombinant product	5,162
10	Avastin	Roche	Monoclonal antibody	4,818

A Bit of Ancient History

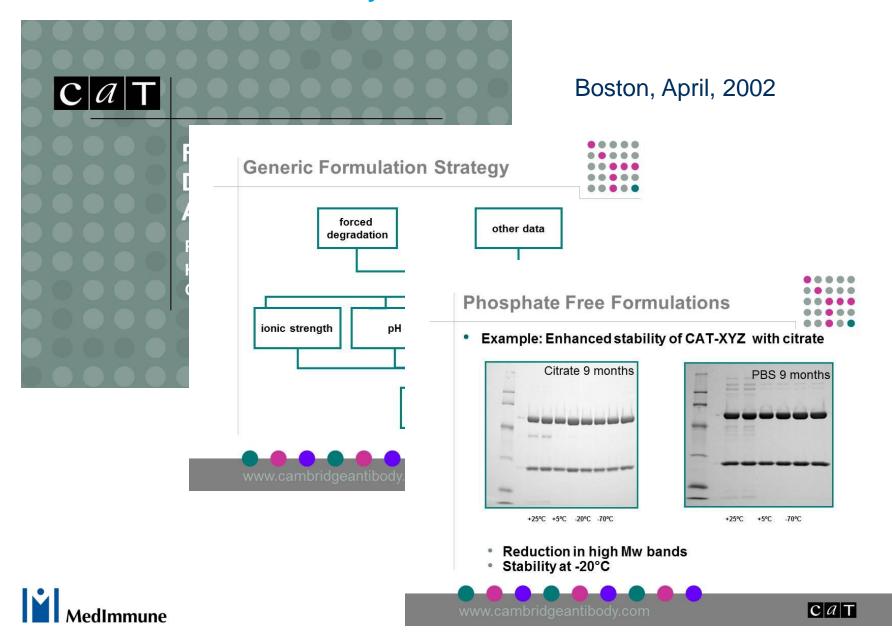
Eur Biophys J (1997) 25: 437-443

© Springer-Verlag 1997

ARTICLE

P. G. Varley · A. J. Brown · H. C. Dawkes · N. R. Burns

A case study and use of sedimentation equilibrium analytical ultracentrifugation as a tool for biopharmaceutical development

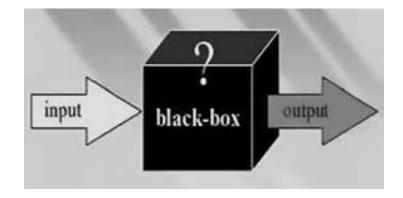

Accepted: 6 October 1996

Abstract Analytical ultracentrifugation (AUC) has reemerged as a powerful technique for protein characterisation. We report the pivotal role sedimentation equilibrium AUC has played in the development of macrophage inflammatory protein- 1α (MIP- 1α) as a protein therapeutic. MIP- 1α has potential clinical applications in cancer but its clinical use is limited, since it associates to form large insoluble aggregates in physiological buffers. Using AUC as ufacture, formulation and quality control to provide information concerning aggregation and biologically important molecular interactions. This paper illustrates some of our work in the application of modern AUC in protein pharmaceutical development by highlighting the key role it has played in the development of BB-10010, a variant of the protein macrophage inflammatory protein-1 α (MIP-1 α).

Macrophage inflammatory protein- 1α (MIP- 1α ,

More Ancient History

Where We Were


Formulation is a "black box"

Simple

- PBS
- Low concentrations
- Frozen (-80°C)

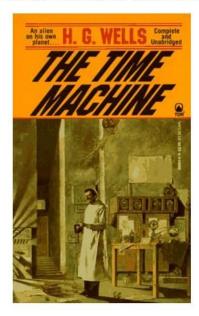
- Manual
- Low throughput
- Low resolution

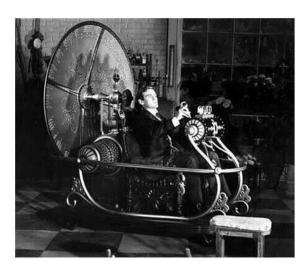
Moving On.....

Stability and Formulation

Boston, Nov, 2010

Biggest single source of issues for IND enablin


 Early assessm selection)



Stability and Formulation

- Standard formula development stall products
- Selection of INI formulation
 - Depends on
 - > molecules beha
 - > requirements for
 - > on attitude to ri
 - > Experience etc

■ We do not have a time machine

Agenda

The last 20 years or so

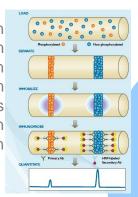
Where we are now

The future

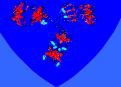
Trends

- Higher concentrations required
- ◆ More complex molecules
- ◆ Novel delivery devices
- ◆ Need for speed

Where We Are Now


- Developability
- Systematic and statistical approaches
- Analytical Advances
- Automation
- Novel molecules
- Delivery and devices

Lead Selection with Developability Focus


High throughput cIEF

- Fragmentation
 - Deamidation
 - Oxidation
- Asp isomerization
- Sequence variants
 - O-glycosylation
 - Glycation

Chemical Stability & PTMs

Target clones

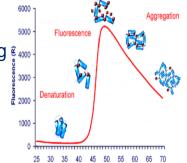
In silico prediction tools

- Differential static light scattering
- StarGazer 384-well
- Determine aggregation transition (Tagg)

StarGazer-384™ system

- Conformational stability
- Colloidal stability
- Interfacial stability
- pl
- Aggregation

- Selective pressure for favourable Development & Manufacturing Properties, e.g:
 - Stability & resistance to degradation (in culture, in process, in vial, in vivo)
 - Structure-function (identify key attributes)
 - (Expression)

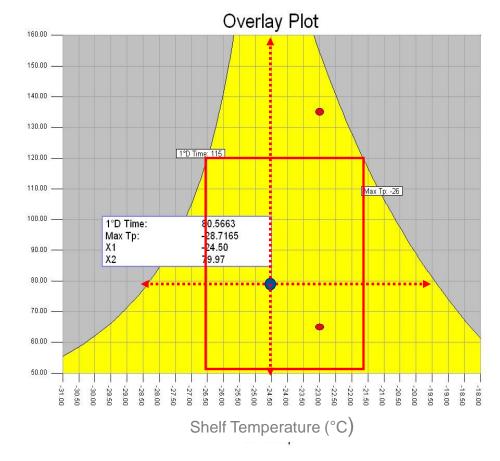

Differential scanning \$\varepsilon_{400}\$. fluorimetry (DSF)

Sypro-Orange dye

Solution

Properties

 Determine unfolding transition (Tm)


Temperature (C)

Systematic and Statistical Approaches Design Space For Lyo Cycle

Chamber Pressure (mT)

Evolution of analytical technologies – from "black-and-white TV" to "3D high definition TV"

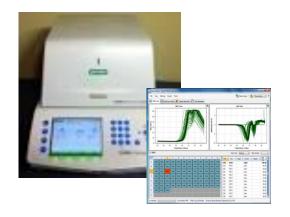
Synagis approval

Today

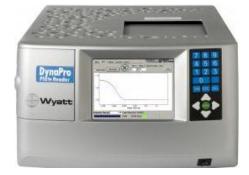
Future

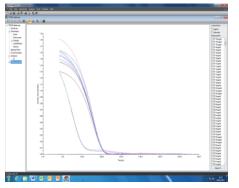
"State-of-the-Art" analytical capabilities are the backbone of Formulation Development.

- •Peptide map with simple MS
- Simple bioassay (microneut)
- SDS-PAGE
- •ELISAs

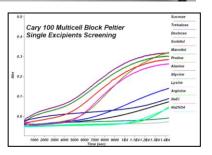

- Peptide map with high resolution MS
- Reporter gene, cytotoxicity and other bioassays
- Extensive particle characterization
- Platform based assays
- Automation

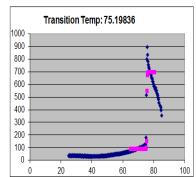
- Deuterium exchange
 MS for higher order
 structure/function
- 2D LC/MS and CE/MS for HCP characterization
- CE-MS for product characterization
- Chip-based glycan and peptide analysis
- Multi-functional bioassays, cell migration; complete assay sets for Fc effector functions

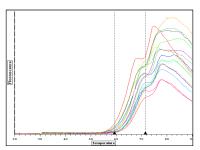

in silico predictive technologies

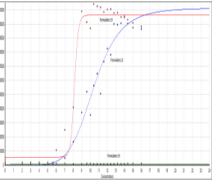


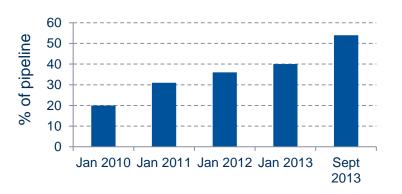
Automation











New Challenges

Beyond antibodies – Novel molecules

1	Peptides
2	ADC
3	mAb Combos
4	Fusion proteins
5	Vaccines
6	Therapeutic Proteins
7	Virus Technologies
8	ADCC
9	Novel Scaffolds
10	Blood Brain Barrier
11	Bispecifics
12	Fab
13	mRNA

New Molecules /Mechanisms & Medicines

ity" Heterogeneity

Evolution of Delivery and Device Technology at MedImmune

1998 **Synagis®** launch

2003 **FluMist** launch

2005 International **Synagis®** launch

2012 **FluMist Acquired** Quadrivalent **AstraZeneca** approved

2013 Multiple **Device and Delivery Technology** across diverse molecules and 5 therapeutic areas

1997

2001

2005

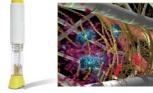
2007

2007

by

2013

Future





Agenda

The last 20 years or so

Where we are now

The future

Future needs

Mab platform

- Ultra high concentrations
- More complex devices
- Combinations and mixtures

- New formats and modalities
 - Increasing diversity & complexity (=challenge)
 - Devices

- Commercial drivers
 - Speed, competition
- Predictability desired stability designed in
 - Automation/HTS
 - In slico modelling
 - Analytical technology
 - Experience
- Informed risk taking

Stability and Formulation

- Unprecedented opportunities for the development of Biological medicines
- Stability and formulation sciences more important than ever to deliver this promise
- Recent developments in the science will continue to enable this to happen

Cancer Immunotherapy J Couzin-Frankel Science 2013; 342:1432-1433

Thanks to

Shahid Uddin

MedImmune Formulation Sciences

