Developability Evaluation During Early Pre-formulation: The Meeting Point Between Research and Development

Bernardo Perez-Ramirez, MS, Ph.D. Senior Scientific Director BioFormulations Development, Global BioTherapeutics One the Mountain Rd. Framingham MA 01701, USA bernardo.perez@sanofi.com

Stability of Biopharmaceuticals: Getting the Chemistry Right. 4th Annual MIBIO Conference. Tuesday, September 30th, 2014. Downing College, Cambridge-UK.

Challenges Facing Protein Formulation and Product Development

- Time and budget allotted for developing and implementing formulations.
- Regulatory requirements.
- Requirements to work closely across sites and divisions as well as with external suppliers.
- Need for quality, innovation and rapid time to market.

Product Development Timeline

- Need time for robust formulation development
- Insufficient window for real-time data
- Start formulation development early (integration with research)

Jevelopment

Principles of the Formulation Developability Assessment: The Interface with Discovery Research

Intrinsic Quality of the Constructs

- Can it handle the stresses associated with development and manufacturing process?
- What are the degradation "pathways" of the protein?
- Rank candidates
- Information on Proper Handling
 - Reduce false negative results due to incorrect handling
- Very Early Information on Protein Solution Behaviour
 - Accelerates the formulation development process
 - Foundation for QbD
- Great Return on Investment
 - Cost ~20 mg and 4-8 weeks.

Developability Evaluation During Early Pre-Formulation

Development Candidate Risk Assessment – Synergistic Collaboration

Formulations Role in Developability Assessment

Developability Evaluation

Relevant Process Stresses Freeze/thaw Shear/Mechanical stress -Viscosity, injectability, solubility

Mock viral inactivation

• Desired results: No change

Forced Decomposition Degradation (pH 5-8) Temperature (45 °C)

 Desired results: Sufficient degradation to understand protein profile and differentiate candidate molecules

Stability and Solution Behavior Concerns

Physical Stability

- Soluble aggregation
- Self association
- Insoluble aggregation
- Particle formation
- Solubility
- Viscosity

Chemical Stability

- Oxidation
- Deamidation
- Isomerization
- Fragmentation
- Disulfide exchange

Function/binding

Analytics

Physical Stability		A280 (concentration) Turbidity Circular dichroism (secondary and tertiary structure) CE-SDS (purity) SDS-PAGE (purity) SEC (aggregation, fragmentation) N-terminal sequencing (identity) AUC (aggregates/oligomerization)
Chemical Stability		cIEF (charge variants) Peptide mapping Oxidation (methionines in CDR) Isomerization (aspartic acid in CDR) Deamidation (PENNY peptide)
Functional Stability	_{	Surface Plasma Resonance (Biacore)

CASE STUDY: Which candidate has the best chance of making it through development and manufacturing...?

General Properties

More thermal stability in Constructs 1 and 2

Less secondary structure in Construct 3

PROCESS STRESSES: Mock Viral Inactivation -Secondary Structure by CD

PROCESS STRESSES: Mock Viral Inactivation (VI)

Quality Attribute	C-1	C-2	C-4	Comments			
Aggregation							
Purity							
Charge Heterogeneity							
Oxidation							
Secondary Structure			Possible ↓Construct 2				
Turbidity							
Melt Point							
*Quality attributes ranked in order of criticality							
No change	Minor c	hange		Moderate change Major change			

C3 was not considered as a candidate due to its obvious weak performance on most analytics and lack of *in vitro* activity

PROCESS STRESSES: Shear/Mechanical Stress

Quality Attribute	C-1	C-2	C-4	Comments			
Aggregation							
Purity							
Charge Heterogeneity							
Secondary Structure							
Turbidity							
Melt Point							
*Quality attributes ranked in order of criticality							
No change	Minor cl	nange		Moderate change	Major change		

PROCESS STRESSES: Freeze Thaw Study

Quality Attribute*	C-1	C-2	C-4	Comments	
Aggregation					
Purity					
Charge Heterogeneity					
Secondary Structure					
Turbidity					
Melt Point					
*Quality attributes ranked in order of criticality No change Minor change Moderate change Major change					

 \bigcirc

FORCED DECOMPOSITION: pH Study - Deamidation of PENNY Peptide

FORCED DECOMPOSITION: pH Study - Heavy Chain Clipping

FORCED DECOMPOSITION: Low pH (5.0) and Elevated Temperature

Quality Attribute	C-1	C-2	C-4	Comments
Aggregation				
Purity				↑Fragmentation
HC Clip				
Isomerization				
Deamidation				
Charge Heterogeneity				
Oxidation				
Secondary Structure				
Turbidity				
Melt Point				
*Quality attributes ranked in o	rder of c	criticality	,	
No change	Ν	linor cl	hange	Moderate change Major change

FORCED DECOMPOSITION: High pH and Elevated Temperature

Quality Attribute*	C-1	C-2	C-4	Comments			
Aggregation							
Purity				↑Fragmentation			
HC Clip							
Isomerization							
Deamidation				Significant ↑ in PENNY peptide			
Charge Heterogeneity				Significant ↑acidic forms			
Oxidation							
Secondary Structure							
Turbidity				Slight opalescent			
Melt Point							
*Quality attributes ranked in order of criticality							
No change		Minor	change	Je Moderate change Major change			

Developability Ranking

Stress	C-1	C-2	C-4			
General						
Freeze-thaw						
Shear						
Viral Inactivation						
High temperature, pH 8.0						
High temperature, pH 5.0						
Formulation Developability Ranking Construct 2>Construct 1>Construct 4>>Construct 3						
Favorable Neutra	al W	eak	Detrimental			

SUMMARY: Improving formulation strategies and outcomes by strengthening the Interface with discovery research

- Identify problematic candidates
- Identify analytical challenges
- Accumulate solution behavior data which will help guide development and Quality by Design (QbD)
- Early information about the solution behavior of candidate proteins helps in development strategies for robust dosage form development in a timely fashion.

Acknowledgments

- Patrick Flanagan
- Rob Simler
- Nick Guziewicz
- Andrew Massetti
- Laura Geagan (AD)
- Lunds Anders (AD)
- Bill Brondyk (NPE)
- Bob Mattaliano

