

Emergent Macromolecular Therapies

Screen early - fail early: Rapid analytical screens for protein formulation

Dept. Biochemical Engineering, UCL

EPSRC Centre for Innovative Manufacturing

Creating manufacturing innovations so as to deliver affordable next generation advanced therapies to the UK healthcare system

Project Partners. Industry Associations: ABPI, BIA, HealthTech & Medicines KTN. **Companies:** Aegis Analytical, Avacta, BioPharm Services, BTG Plc, Eli Lilly, Francis BioPharma Consulting, Fujifilm Diosynth Biotechnologies, GE Healthcare, GlaxoSmithKline, Lonza Biologics, MedImmune, Merck & Co, MSD Biologics, Novo Nordisk, Novozymes Biopharma, Office of Health Economics (OHE), Pfizer, Syntaxin, The Automation Partnership (TAP), UCB Pharma. **Government-related:** Health Protection Agency, NIBSC, NHS QIPP.

EPSRC Centre for Innovative Manufacturing

London

Centre Team & Consortium

- Collaboration initiated by an academic core:-
 - UCL Biochemical Engineering (Lead) Chemical Engineering Health Economics
 - LSoP Formulation Engineering
 - ICL Chemical Engineering
- Supported by a group of: 25 industrial users including SMEs,
 7 NGOs / Industry Associations
- Extended by a network of: 23 national & international academics

Academic Centre Team

When does formulation start?

Paradigms to improve "formulatability"

1. "Screen early: fail early"

- Find "troublemaker" proteins earlier
- Provide appropriate "stress tests" for formulation engineers

2. "Better by design"

- Develop robustly manufacturable protein scaffolds
- Establish predictive protein design evaluation tools
- Understand protein aggregation better

Formulation development

Biophysical analysis of proteins

Analytical Ultracentrifugation

UCL

Challenges and possible solutions

• Too little material available at early bioprocess development stages

- Design space is very large for new entities
- Formulations are at high concentration (10-200 mg/ml)
- Many biophysical analyses use 0.1-2ml, 0.01-1 mg/ml
- Forced degradation is not the same as unforced degradation
 which degradation species are a problem?
- Predict outside of measurement range
- Create lower volume analytics
- Higher throughput *with* high accuracy *and* high sensitivity
- Improve predictability of shelf-life and degradation pathways

Freeze-drying in microplates

Rate of sublimation in microplate

Thermal imaging of microplate freezing

Grant Y, Matejtschuk P, Dalby PA (2009) *Biotech. Bioeng.* 104:957-964. Rapid optimisation of protein freeze-drying formulations using ultra scale-down and factorial design of experiment in microplates.

Freeze-drying optimisation - GCSF

0.1 ug/ml GCSF, pH 7

A: Tween (%v/v)

- stimulates white blood cell production
- improves recovery post-chemotherapy
- assayed by cell count after growth stimulation

Scott Grant & Paul Mateitschuk (NIBSC)

Freeze-drying optimisation - GCSF

UC

Took two weeks and used 370 ng GCSF!

GCSF forced degradation studies

Initial comparison to unformulated GCSF

- Iyophilized formulation
- unlyophilized formulation

▲ PBS

Scott Grant & Paul Matejtschuk (NIBSC)

Some thermostability methods

Equilibrium denaturation:

- Capillary DSC (eg. MicroCal)
- Autotitrating fluorimeter/circular dichroism
- ANS/SYPRO binding (eg. ThermoFluor / DSF)

Equilibrium exchange kinetics:

- MALDI-TOF
- NMR

Early microplate-based screens

Ahmad SS, Dalby PA (2011) *Biotechnol. Bioeng.* 108:322-332. Thermodynamic parameters for salt-induced reversible protein precipitation from automated microscale experiments.

Aucamp, J. P. (2008) *Biotech Bioeng.* 99, 1303-1310 Aucamp, J. P. (2005) *Biotech Bioeng.* 89 599-607

280 nm

340 nm

Effect of excipients on G_{1/2}

RNaseA in 50 mM formate pH3, MOPS pH7 or glycine pH9.9 Literature values from Pace *et al* 1990 *Biochemistry* 29:2564-2572

Protein stability in microfluidics

- 266 nm, 5 mW, 1 kHz pulsed UV laser
- fused-silica glass micro-capillary (ID=100 mm, OD=300 mm)
- Emission filtered by 320-400 nm dichroic mirror
- Measurement volume of 1.5 nL minimum

Gaudet M, Remtulla N, Jackson SE, Main ERG, Bracewell DG, Aeppli G, Dalby PA (2010) *Protein Science.* 19: 1544-1554. Protein denaturation and protein:drug interactions from intrinsic protein fluorescence measurements at the nanolitre scale.

Signal processing

• Beam splitter and photodiode measurement used as a reference

Measurement stability and cleaning

Sample flow removes optical bleaching

UCL

Acquiring the fluorescence measurement

- Signal is stable (photobleaching avoided)
- Measurement is rapid (50-100ms to average 50-100 pulses)

Sensitivity of fluorescence measurement

• Signal response is linear: 0.15 μ M to 1.5 mM (0.01-100 mg/ml) BSA

Method	Limit of detection (mg/ml)	Minimum [Protein] (uM)	Volume (L)	Number of Proteins
Microplate				
BSA	0.005	0.076	2.6x10 ⁻⁴	1.16 x 10 ¹³
RNaseA	0.0001	0.007	2.6x10 ⁻⁴	1.14 x 10 ¹²
Microfluidics				
BSA	0.01	0.15	1.5x10 ⁻⁹	1.4 x 10 ⁸

- 2x greater minimum concentration required
- 80,000x less protein required
- concentration range: 0.15 uM to 1.5 mM (0.01-100 mg/ml)

Nanolitre stability & ligand affinity screening

- 80,000x less protein than 96-well
- 0.15 uM to 1.5 mM (0.01-100 mg/ml)
- accurate ΔG_{D-N} , $C_{1/2}$, K_d

Gaudet M, Remtulla N, Jackson SE, Main ERG, Bracewell DG, Aeppli G, Dalby PA (2010) Protein Science. 19: 1544-1554.

Optical control of heat in microfluidics

UCL

Acknowledgements

PhD/PDRA:

Stability	Jean Aucamp, Julio Martinez-Torres, Michael Rose
Precipitation	Shahina Amhad
Freeze-drying	Scott Grant
Microfluidics	Matthieu Gaudet, Sagar Dodderi, Samir Aoudjane
Microfluidics	Matthieu Gaudet, Sagar Dodderi, Samir Aoudjane

Collaborators:

Microfluidics	Gabriel Aeppli (LCN)
	Dan Bracewell (UCL)
FKBP-12	Ewan Main (QMUL)
	Sophie Jackson (Cambridge)
Freeze-drying	Paul Matejtschuk (NIBSC/ HPA)

Funding & material donors:

EPSRC (IMRC and EngD) BBSRC (BRIC, FOF and studentships) British Council (BC) Association of Commonwealth Universities (ACU) NIBSC (Health Protection Agency)

