

MALEIMIDE-FUNCTIONALISED LIPOSOMES AS MUCOADHESIVE VEHICLES FOR DRUG DELIVERY TO URINARY BLADDER

Daulet Kaldybekov, Vitaliy Khutoryanskiy

International Agency for Research on Cancer

World cancer factsheet

January 2014

World cancer burden (2012)

Bladder cancer has the 9th highest incidence rate worldwide, with a greater prevalence among men than women.

In the UK:

- § 10,100 new cases of bladder cancer in 2014, that's 28 cases diagnosed every day.
- § BC is the 10th most common cancer (2014).
- § In males, BC is the eight most common cancer and 14th in females

https://www.iarc.fr

Urinary bladder: intravesical delivery

- Normal capacity: 400–600 mL;
- 150–300 mL triggers the urge to urinate;
- Urinary bladder wall is highly impermeable

Bladder cancer

Intravesical therapy is used only for non-invasive (stage 0) or minimally invasive (stage I) bladder cancers.

Intravesical immunotherapy: Bacillus Calmette-Guerin (BCG)

Intravesical chemotherapy: Mitomycin, valrubicin, doxorubicin, and gemcitabine

Types of liposomes

- Non-toxicity, biocompatible, and completely biodegradable
- q Increasing drug efficacy
- **q** Site avoidance effect
- Increasing stabilityvia encapsulationprocess
- Reducing the toxicity of encapsulated drugs

THE COMPOSITION OF LIPOSOMAL FORMULATIONS

Liposome formulations	PC (%)	Chol (%)	PEG ₂₀₀₀ -DSPE (%)	PEG ₂₀₀₀ -DSPE-Mal (%)	NaFlu (%)
Conventional	0.773	0.077	-	-	0.2
PEGylated	0.773	0.077	0.075	-	0.2
PEG-Mal	0.773	0.077	-	0.075	0.2

PHYSICOCHEMICAL CHARACTERISTICS

Liposome formulations	Mean diameter (nm)	PDI	Zeta potential (mV)	%EE	%LC
Conventional	97 ± 1	0.145	-53 ± 1	53 ± 6	12 ± 1
PEGylated	85 ± 1	0.217	-32 ± 2	27 ± 2	6 ± 1
PEG-Mal	86 ± 1	0.224	-37 ± 1	25 ± 2	5 ± 1

Conventional liposomes

PEGylated liposomes

PEG-maleimide liposomes

Application of mucoadhesive onto a bladder mucosa

Exemplary fluorescent images of the retention of formulations on urinary bladder mucosa

WASH OUT₅₀ PROFILES

Wash Out ₅₀ (WO ₅₀) values are defined as the
volume of liquid necessary to remove 50% of
a mucoadhesive material from a substrate

Formulations	WO ₅₀ , mL	
Conventional	15	
PEGylated	24	
PEG-Mal	48	
FITC-chitosan	91	
FITC-dextran	5	

Proposed mechanism of bonding between maleimidefunctionalised liposomes and mucosal surfaces

Penetration into bladder mucosa

Exemplary fluorescence microscopy images:

Maleimide-terminated PEG liposomes

Toxicity - Slug mucosal irritation test

METHOD:

Kept in desiccators lined with paper towels soaked with 20 mL of PBS at RT for 48 h

 $Slugs\,sourced\,from\,Harris\,Garden,\,UoR$

weighed before the experiment

filter paper moistened with test materials

Left to contact for 1 h

rinsed and wiped

Mucus production:

$$MP = \frac{(m_b - m_a)}{m_b} \times 100\%$$

re-weighed

BAC – Benzalkonium chloridePBS – Phosphate buffered saline

PEG – Poly(ethylene glycol) methyl ether (average Mn 5,000)
PEG-Mal - Methoxypolyethylene glycol maleimide (average Mn 5,000)

MHA – 6-Maleimidohexanoic acid

Results published in

Eur. J Pharm. Sci. 2018, 111, 83-90

Acknowledgements

Sponsor:

THANK YOU!