The Secret Life of a Pickering Emulsion

Paul S. Clegg

SOFI CDT

EPSRC Centre for Doctoral Training in Soft Matter and Functional Interfaces syngenta ECFP

Outline

- 1. Pickering emulsions
- 2. Making & breaking bridges

3. The secret life of Pickering emulsions

Particles at liquid-liquid interfaces

B. P. Binks, Current Opinion in Colloid & Interface Science, 2002, 7, 21 – 41

Conventional emulsion

H₂O oil surfactant Surface active agent

Emulsions

Trapping energy $\Delta E \sim k_B T$

i.e. surfactants hop on and off

"Infinitessimal" increase in area is covered by fresh surfactant

 γ is decreased

Trapping energy $\Delta E > 10,000 k_B T$

i.e. particles irreversibly trapped "Infinitessimal" increase in area cannot be covered by mesoscale colloids

γ unchanged or inappropriate

Young's Modulus E ~ γ / d

D. Vella *et al*, Europhys. Lett. **68**, 212 (2004)

Bijels: bicontinuous domains

Tavacoli et al Adv. Funct. Mater. **21**, 2020 (2011)

liquids separate via spinodal decomposition particles *jam* on interfaces

Outline

- 1. Pickering emulsions
- 2. Making & breaking bridges

3. The secret life of Pickering emulsions

Colloidal particles are mesoscopic

This occurs when:

- 1. More interface is created than can be protected
- 2. The shear zone is small compared to the total volume
- 3. Particle protrude into the continuous phase

Methods and materials

- Oil-in-water emulsions stabilised by Stober silica particles radius ≈ 430nm.
- Oil phase is a mixture of dodecane and isopropyl myristate.
- Disperse particles in water with an ultrasonic probe typically 150x 1s pulses.
- Vortex mix samples until clear.

Shear rate

15krpm.

²⁰krpm.

SEM shows that particles are indeed bridging droplets.

Also interesting are the hollows left on the droplet surfaces following fracture.

French et al JCIS **441**, 30 (2015)

Reshearing

5krpm10krpm15krpm20krpmvortexthenthenonly20krpm5krpm

To create a robust Pickering emulsion, bridging should be avoided

You need to use enough particles!

5krpm only.

20krpm only.

Outline

- 1. Pickering emulsions
- 2. Making & breaking bridges

3. The secret life of Pickering emulsions

Materials and Methods

- Initially make two separate emulsions one red, one green.
- Following emulsification, the red and green samples are mixed together as gently as possible.
- Place on a roller bank:

Bright field microscopy

As the sample is rolled, the emulsion deaggregates. Scale bars are 100 µm.

 $100\ \mu m$

1 hour rolling

Colours segregated

 $100\ \mu m$

6 hours rolling

More interspersed

Some multicoloured drops

 $50\,\mu m$

21 hours rolling

More thoroughly interspersed

Some well-mixed drops

Mechanism

 $50 \, \mu m$

1191 hours rolling

All multicoloured drops

Acknowledgements

- David French
- Phil Taylor (Syngenta, UK)
- Jeff Fowler (Syngenta, USA)
- Andrew Schofield
- Joe Tavacoli
- Kathryn White

