Imperial College London

Development of a Coarse-Grained Polyoxyethylene Glycol Non-ionic Surfactant Model Using the SAFT-y Mie Force-field for Molecular Dynamics Simulations Emma C. L. Richards, Erich A Müller, George Jackson

Surfactant = 'Surface-active agent':

- Adsorb onto interfaces
- Reduce surface tension

POE Surfactants:

• Nonionic

Understanding the nature of surfactants allows you to 'design' specific systems for the application required

Coarse-Graining:

A^{chain}

 $Nk_{\rm B}T$

Models

- Low toxicity
- Biodegradable
- High performance at low temperature

Uses:

- Detergents
- Personal Care e.g. Shampoo
- Paint formulations
- Petrochemicals
- **Biomedical** applications e.g. drug delivery

Micelles (Spherical, rodlike...)

cusoccontr

ZOZ

- Cylindrical
- Mesophases i.e. Lamellar, bilayers

3. Find which groups are available and what needs to be developed

4. Parameterise groups that aren't made - gSAFT 5. Parameterise the unlike interactions - gSAFT or MD

SAFT: • EoS based on molecular theory²

Z

A^{ideal} $A^{\mathrm{mono.}}$ $Nk_{\rm B}T$ $Nk_{\rm B}T$ Nk_BT

YCCHORING CONTRACTOR Interactions between beads – Mie potential

Surfactorie

number

80

60

40

20 -

z

Create a buildable coarse-grained (CG) POE surfactant model using SAFT theory to use in MD simulations

T/K

Parameterised to

three different

Alkane¹ Ether Triethylene Glycol Model: **Preliminary Studies:** • Any length $C_i E_j$ surfactant with: - i = 3n+1 i.e. $C_3, C_7, C_{10}, C_{13} \dots$ - j = n i.e. $E_1, E_2, \dots, E_{10}, E_{11}, \dots$ System equilibration time Low concentration aggregation Weight fraction $W_{Surf} = 3.64 \%$ Average Maximum Minimum t→

Conclusions + Future Work

Summary:

- ✓ Successful Ether model that accurately describes VLE data through MD simulation and SAFT theory
- Y Ether model also capable of calculating purely predictive properties
 Rheology studies, including comparison between varying such as surface tension, not utilized within parameterisation ✓ Fully formed POE surfactant model for alkane lengths C_i in multiples of 3 carbon atoms and any ethoxylated length E_i
- Future applications: Thorough morphology investigation, including high concentration systems corresponding to mesophases methods and calculation of CMC⁴

3. E. W. Lemmon, M. O. McLinden, and D. G. Friend, Ther- mophysical Properties of Fluid Systems in NIST Chemistry WebBook, NIST Standards and Technology, Gaithersburg MD, 20899 (retrieved 2013), http://webbook.nist.gov. 4.Yosadara Ruiz-Morales and Ascención Romero-Martínez. Coarse-grain molecular dy- namics simulations to investigate the bulk viscosity and critical micelle concentration of the ionic surfactant sodium dodecyl sulfate (sds) in aqueous solution. The Journal of Physical Chemistry B, 122(14):3931–3943, 2018.