

Styling Hair Naturally Revolymer Personal Care

Rocio Perez, Julie Bacon, Neil Kilcullen 2nd September 2016

Outline

- RevCare NE 100S Polyitaconic Acid (NK)
- Characteristics of Hair Styling Agents (NK)
- Efficacy Studies (RP)
 - High Humidity Curl Retention
 - Combability
 - Curl Stiffness
 - Anti-Frizz
- Summary & Conclusions (NK)

RevCare NE 100S Polyitaconic Acid

Background

- "Natural" and "Naturally-Derived" are enduring concepts in Personal Care
- Hair Styling is a major category in Personal Care
- There are few natural hair styling polymers available currently

- Market Opportunity

Polyitaconic Acid: Characteristics

- Itaconic Acid
 - Naturally occurring
 - Non-toxic
 - Readily biodegradable
 - Produced on an industrial scale by fermentation (e.g. glucose) with Aspergillus terreus
- Polyitaconic Acid
 - Film forming polymer
 - Properties can be tailored via the degree of neutralisation
 - Hydrophilic / hydrophobic balance
 - Hold / flexibility balance
 - Hold / wash-out balance

HO

CH₂ OH

Polyitaconic Acid: Manufacture

Method of Polymerisation (US 7,920,676)

- Polymers are prepared under selected conditions of partial neutralisation
- High conversion rate

Continuous Production (US 8,420,758)

- Exothermic heat from the polymerisation reaction
- Endothermic heat transfer from solvent (water) evaporation

Characteristics of Hair Styling Agents

Characteristics of Hair Styling Agents

• Function

• Build inter-fibre forces to maintain the desired configuration or shape

Consumer Expectations

• Style held firmly over extended periods of time and exposure to environmental conditions

• Requirements

- Uniform application
- Clear layer
- Hair appears natural and glossy
- Hair feels natural not tacky, not too stiff
- Hair easily combed (wet and dry)
- Product readily removed during washing

Hair Fibre Welds

- Hair styling polymers function by forming seam welds and spot welds between adjacent fibres in a hair array
- Strong forces are exerted on the welds as a result of hair movement
- Styling polymers must form durable films which adhere to hair fibres strongly otherwise welds will undergo:
 - Brittle fracture film is too hard and glassy
 - Cohesive failure film is too soft or rubbery
 - Adhesive failure

Bending Modulus of Hair

The bending modulus is that of the composite

Spot Weld

Natural bending modulus of the hair is retained

Efficacy Studies

High Humidity Curl Retention

Style Retention: Method

- Tresses are wetted
- Product is applied wet applied and combed through
- Tresses are styled and air-dried overnight
- Tresses are placed in a humidity chamber at 35°C/85% RH

Style Retention: Results

Observations & Conclusions

- In a high humidity environment polymer films will absorb water. Films that are too hygroscopic will over plasticise and fail.
- Tresses treated with RevCare NE 100S retain their configuration demonstrating a resistance to over plasticisation and weld failure
- RevCare NE 100S outperforms the PVP/VA benchmark and is at least as effective as leading synthetic styling polymers

Combability

Comb Resistance: Method

- Tresses are wetted
- Product is applied
- Tresses air-dried overnight
- Force required to comb the tresses is measured using a hair combing rig attached to a texture analyser

Comb Resistance: Results (First Cycle)

Comb Resistance: Results (Second Cycle)

Observations & Conclusions

- The force required to comb styled hair depends on how the fibres interact styled hair requires a larger force
- The greater the degree of welding (seam welds, number of spot welds) the larger the combing force
 - VP/Acrylate copolymer predominantly seam welds first cycle highest force, second cycle notable reduction in the combing force
 - VP/Maleate/Acrylate copolymer welds more flexibly lower force differential between 1st and 2nd cycles
 - RevCare NE 100S and PVP/VA weld lightly comb force is low and tends towards no treatment

Curl Stiffness

Style Flexibility: Method

- Tresses are wetted
- Product is applied
- Tresses air-dried overnight
- Force required to flick a curl with a metal rod is measured using a modified hair combing rig attached to a texture analyser

Style Flexibility: Results

RevCare NE 100S

Style Flexibility: Results (First Cycle)

Style Flexibility: Results (Second Cycle)

Flexibility Ratios

Observations & Conclusions

- For styled hair, bending the array exerts forces on the polymer film leading to some weld failure subsequent bending requires less force
- The bending force required gives an indication of the inherent softness of the hold
- Differences in forces required in consecutive bending cycles are an indication of the flexibility of the polymer film
- RevCare NE 100S delivers a relatively soft hold and has good flexibility

Frizz Control: Method

- Tresses are wetted
- Product is applied
- Tresses air-dried overnight
- Tresses are placed in a humidity chamber at 25°C/85% RH

Frizz Control: Results

Frizz Control: Image Analysis Ratios

Observations & Conclusions

- Hair becomes frizzy owing to hydrogen bonds between adjacent fibres being broken
- Styling polymers supplement the degree of inter-fibre bonds
- This bonding is diminished gradually as the polymer film hydrates and plasticises
- RevCare NE 100S bonds hair lightly but is resistant to plasticisation helping to prevent frizz

- Styling polymers form welds between adjacent fibres in a hair array
 - Seam welds \rightarrow bending modulus is that of the composite
 - Spot welds \rightarrow natural bending modulus of the hair is retained

- Styling polymers must form flexible durable films
 - The bending force \rightarrow softness of the hold
 - Consecutive bending cycles \rightarrow flexibility of the polymer film

- In a high humidity environment polymer films will absorb water
 - Hygroscopic films \rightarrow over plasticise \rightarrow fail
- Hair becomes frizzy owing to hydrogen bonds between adjacent fibres being broken
 - Styling polymers \rightarrow inter-fibre bonds \rightarrow anti-frizz

- RevCare NE 100S (Polyitaconic Acid)
 - Resistant to over plasticisation and weld failure
 - Retains its configuration in a high humidity environment
 - Welds lightly
 - Delivers a relative soft hold and good flexibility
 - Required combing force is low
 - Functions well as an anti-frizz agent

Revolymer (U.K.) Ltd 1 Newtech Square Zone 2, Deeside Industrial Park Deeside Flintshire, UK CH5 2NT

Tel: +44 (0) 1244 283 537 Email: <u>neil.kilcullen@revolymer.com</u>

www.revolymer.com

Tel: +44 (0) 1244 283 540 Email: <u>rocio.perez@revolymer.com</u>