2 September 2016

THE SCIENCE OF HAIR CARE - A GOOD HAIR DAY

The Use of Surface Analysis Techniques in Hair Product Development

Dr Chris Pickles

Why surfaces are important?

- The surface controls factors such as:
 - Cleanliness
 - Biocompatibility
 - Adhesion strength
 - Wear performance
 - Wetting
 - Corrosion resistance
 - Optical properties e.g. colour/finish/shine
 - Electrical properties
 - Printability/paintability
 - . . . and many others

Problem solving on surfaces

 Surface analysis techniques measure the chemical and physical composition of the outermost atomic layers of a material

Chemical Composition

Secondary Ion Mass Spectrometry (SIMS)

X-Ray Photoelectron Spectroscopy (XPS) **Physical Characteristics**

Optical microscopy

Scanning Electron Microscopy (SEM)

Surface Metrology - 3D profiling White light interferometry AFM - Atomic Force Microscopy 3DSEM Stylus Profilometry (2D)

Secondary Ion Mass Spectrometry (SIMS)

_

SIMS modes and data output

- Static SIMS
 - Minimal surface disruption
 - Fingerprint spectrum
- Dynamic SIMS
 - High etching rate
 - Depth profiling
- Imaging SIMS
 - Elemental and molecular mapping
 - Distribution of species

Dynamic SIMS vs static SIMS

Elemental information Depth profiling Quantification Bulk analysis ~10-30µm

Elemental + molecular information Qualitative/semi-quantitative Surface analysis ~1-2nm

- In SSIMS, the chemical integrity of the surface is preserved during analysis
- Each primary impact affects a pristine area

Atomic surface density ~10¹⁵ at.cm⁻² Static limit ~10¹² ions.cm⁻²

Time-of-Flight SIMS

- High sensitivity
 Parallel mass detection
- High mass resolution Accurate Mass analysis
- Mass accuracy
 1 10 ppm
 - 1 10 ppm
- Mass range
 Up to 10000 amu

Mass discrimination: the flight time of an ion varies as the square root of its mass

ToFSIMS - a mass spectrometry

Detailed chemical and molecular structure information

Hair analysis

- Fibres are generally difficult to analyse due to the curvature
- Mounting is a critical factor affecting the quality of images
 - Individual fibres mounted parallel against each other to form a "flat bed" and present a more uniform surface to minimise distortions due to field effects in the images

Identification of an active on conditioned hair

Active: polymeric quaternary amino chloride

Intensity

ntensity

ToFSIMS imaging

- Spatial distribution of species on the surface

Focused pulsed ion beam rastered over the surface

X, Y coordinates recorded with flight time of ions to produce mass resolved secondary ion images

Chemical mapping with sub-micron lateral resolution: < 200nm at best

Typically used for areas < 150μ m; larger areas (up to 500μ m) ~3 - 5μ m resolution used

- Retrospective analysis
- Spectrum-per-point (raw data) analysis
- Region-of-Interest reconstruction

Silicone-containing shampoo on bleached hair

Field of view: 150.4 × 150.4 µm²

Total ion tc:44709739 Silicone (green) / Hair Substrate (red)

Silicone deposition is clearly identified and the signal intensity indicates how much silicone is present

Hair section

- Microtoming of hair embedded in resin
- Determination of penetration of species into the hair shaft

Field of view: $121.1 \times 121.1 \ \mu m^2$

DSIMS

- Forces of electric field and magnetic field used for mass discrimination
- Scanned instrument
 - Higher primary ion doses hence more destructive and less suitable for organic materials
 - Elemental information mainly

Depth profiling

Deuteration of small active molecules used in hair treatment

²H signal used to monitor penetration of species

Penetration deeper than 12 microns

Hair section - imaging

Sample 1 pH2 left on

Rinsed

Hair section - imaging

⊢ 4 um 136150_citrph2r1a.im;12C 14N :1 Log[0..5

Sample 2 pH2 left on

Rinsed

Hair section - imaging

Sample 2 pH4 left on

Rinsed

X-Ray Photoelectron Spectroscopy (XPS)

- Soft x-ray irradiation
- Ejects core level photoelectrons
 Characteristic binding energy for elements
- Outer level electron relaxes to fill hole
- X-rays emitted
- Internally captured Auger electron emitted

X-Ray Photoelectron Spectroscopy (XPS)

- Identification of all elements (except H and He)
- Conductors/insulators
- Elemental + chemical/oxidation states
- Quantification
- Surface specific (sampling depth <10nm)
- Surface imaging
- Depth profiling
- Complementary technique to ToFSIMS which is more molecular specific

Spectroscopy

Quantification table output

	Tarnished Fluoropolymer coated samples									
Element	2-B1	2-B1 2-B2		2D-1	1-BC1	1-DE1				
Carbon	32.9	32.4	35.0	34.8	33.6	35.5				
σ	0.4	0.4	0.4	0.4	0.4	0.4				
C-H/CH-CF	2.0	1.7	3.4	4.1	2.5	3.9				
C-O/CH-CF ₂	1.5	1.2	1.8	1.6	1.6	1.7				
C=O/CF	2.6	2.4	2.8	2.9	2.9	2.9				
CF ₂	23.4	23.8	24.2	23.7	24.1	24.1				
CF ₃	3.3	3.3	2.8	2.5	2.6	2.9				
Fluorine	65.3	66.4	62.2	62.2	64.2	61.6				
σ	0.4	0.4	0.4	0.4	0.4	0.4				
Oxygen	1.9	1.2	2.9	3.1	2.2	2.9				
σ	0.2	0.2	0.2	0.2	0.2	0.2				
с-о-с	1.3	0.8	2.3	2.5	1.6	2.4				
0-CF ₂	0.6	0.4	0.5	0.6	0.7	0.5				
C-C/(CF ₂ + CF ₃)	0.075	0.063	0.125	0.154	0.092	0.142				
Tarnish Index	2	4	5	5	6	5				
Lucideon File	E5F0601	E5F0602	E 5 F 0603	E5F0604	E5F0607	E5F0608				

XPS imaging

Polypropylene mesh

Max. spatial resolution 3µm

PP substrate = red PEO coating = green

Hair section

- Hair embedded in epoxy resin between PE plates
- Magnification of the section due to angle cutting

~800µm x 800µm

Spatial resolution 3µm, at best

Hair section - XPS / ToFSIMS comparison

Low resolution

Field of view: 500.0 × 500.0 µm²; Hair cross-section

High resolution

Field of view: 150.0 × 150.0 µm²; Hair cross-section

Field of view: 500.0 x 500.0 um²: Hair cross-section

Metrology

- Optical microscopy / SEM have limited topographical information - qualitative
- Need to quantify the topography
- Historically, contact method such as stylus profilometry used but can be problematic for soft materials with damage to the surface investigated
 - Also, only 2D line scans were measured
- Investment in non-contact profiling techniques

3D non-contact profiling by WLI

- Conventional bright-field microscope with an interferometer objective
- A non-contact 3D surface profiling technique utilising white light interferometry (WLI)
- High spatial and depth resolution in combination with a wide scanning area

Height resolution ~1nm Lateral resolution 0.5µm Samples ~100µm to >10cm Field of view 60µm to >10cm

3D non-contact profiling by WLI

Quantitative measurement of surface topography and film thickness

Roughness parameters, grain and pore analysis, transparent film thickness; sample replication

Effect of conditioning

C:\Transfer\Data2\3DP_Hair Study\male20_unconditioned_3c.map

Unwashed hair 48 hours

Conditioned hair

Effect of conditioning: roughness parameters

Description	Sample	Reading	Ra	Ry	Rz	Sample Mean Ra	Sample Mean Ry	Sample Mean Rz	Batch Mean Ra	Batch Mean Ry	Batch Mean Rz
Male 50s		а	0.27	1.64	1.30	0.25	1.45	1.20	0.25	1.45	1.20
		b	0.23	1.24	1.10						
	1	с	0.25	1.46	1.20						
Female 20s Conditioned		а	0.24	1.76	1.53	0.21	1.34	1.13	0.21	1.34	1.13
		b	0.19	0.98	0.86						
	1	с	0.20	1.27	1.01						
Female 20s Blonde Dyed		а	0.16	1.10	0.91	0.20	1.22	0.99	0.20	1.22	0.99
		b	0.29	1.65	1.30						
	1	с	0.15	0.90	0.75						
Male 20s		а	0.189	1.38	1.06	0.18	1.25	1.02	0.19	1.28	1.01
Conditioned		b	0.143	0.861	0.75						
	1	с	0.209	1.5	1.25						
		а	0.186	1.3	0.911	0.19	1.25	0.95			
		b	0.221	1.27	1.01						
	2	с	0.168	1.18	0.931						
		а	0.225	1.59	1.13	0.22	1.69	1.25			
		b	0.214	1.72	1.27						
	3	с	0.235	1.76	1.35						
		а	0.209	1.35	1.14	0.19	1.11	0.94			
		b	0.177	0.909	0.814						
	4	с	0.177	1.06	0.875						
		а	0.186	1.32	0.982	0.17	1.13	0.86			
		b	0.139	0.98	0.726						
	5	с	0.17	1.09	0.885						
Male 20s		а	0.196	1.6	1.08	0.25	1.63	1.29	0.22	1.41	1.11
hours)		b	0.345	1.8	1.53						
	1	с	0.223	1.5	1.25						
		а	0.219	1.57	1.22	0.22	1.58	1.15			
		b	0.235	1.93	1.31						
	2	с	0.207	1.25	0.916						
		а	0.26	1.51	1.26	0.22	1.31	1.07			
		b	0.189	1.18	0.909						
	3	с	0.205	1.25	1.04						
		а	0.188	1.36	0.883	0.19	1.28	0.96			
		b	0.215	1.45	1.1						
	4	с	0.168	1.02	0.885						
		а	0.225	1.13	1.04	0.23	1.23	1.07			
		b	0.266	1.62	1.31						
	5	с	0.185	0.94	0.871						

Decrease in roughness values by 9% – 13% upon conditioning

Scale height and particle measurement

C1Transfer/Data21Unilever_085234\Sample B\085234_Sample B_Swatch 3_3.map

Scale height and particle measurement

Atomic force microscopy

Common AFM modes

- Surface topography
 - (Contact and non-contact modes)
- Friction force
 - (Lateral force measurement)
- Hardness
 - (Force v distance curves)
- Electrical conductivity
- Magnetic force
- SEM resolution but in air or under liquids

AFM of human hair (10 microns scan)

Before conditioner

After conditioner

AFM of human hair (10 microns scan)

After conditioner

Isometric view

Line trace

Stitched images

Any questions?

Thank you

Contact details

- T +44 (0)1782 764347
- E chris.pickles@lucideon.com
- W www.lucideon.com

