

A biobased feedstock renaissance: Improving ingredient sustainability and functionality with castor-derived precursors

Presented by Michael J. Fevola, Ph.D.

Keeping It Green in Personal Care RSC Formulation Science & Technology Group Online Symposium 2 March 2021

Green Chemistry is core to sustainable ingredient innovation


Our goal is to provide ingredients that deliver objective, measurable improvements in performance, consumer preference, and sustainability.

Green Chemistry encourages:

- Safe, smart chemistry with sophisticated performance; efficacy and efficiency
- Effective use of renewable plant-based feedstocks; new biobased alternatives
- Articulating and minimizing trade-offs to avoid hidden costs/consequences of "natural"

Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice, Oxford University Press: New York, 1998.

Our philosophy is deeply rooted in Green Chemistry and Life Cycle Thinking

1. Feedstock Sourcing

Biobased and renewable feedstocks with a traceable and sustainable supply chain.

2. Ingredient Manufacture

Efficient use of energy and water with minimal emissions and waste generation.

3. Ingredient Shipping

Reduced shipping impacts from a global supply network and high active level ingredients.

4. Product Manufacture

Improved manufacturing efficiency from non-hazardous and easy to process ingredients.

5. Consumer Use

Safe, gentle, and non-toxic ingredients that support compelling claims with perceivable benefits.

6. End of Life

Ingredients that are biodegradable, nonpersistent, and non-toxic to aquatic life.

Feedstock diversification reduces impacts and mitigates risks

Purposeful Diversification

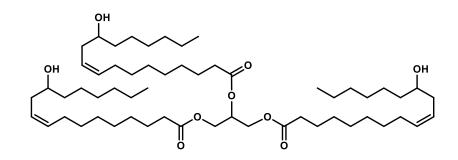
- Reduces eco-impact
- Improves social welfare
- Enhances product performance

INOLEX joins the **Roundtable on Sustainable Palm Oil**

- INOLEX launches non-palm feedstock product line, **SustOleo**[™], with a range of feedstock sources
- INOLEX continues to use diverse feedstock plants in new product launches, including coconut-derived SustOleo[™] TL and brassica-derived AminoSensyl[™] HC
- INOLEX converts to 100% RSPO Mass Balance certified palm-derived products

Overview of today's topics

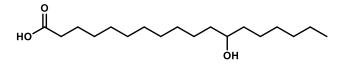
- Ricinus communus (castor) seed oil as a sustainable source of molecular precursors
- Methylheptylglycerin (MHG) the first biobased branched C₈ glyceryl ether
- Capryloyl Glycerin/Sebacic Acid Copolymer 100% biobased and readily biodegradable polyester with unique versatility


Castor as an oil seed crop

- India is leading global producer (>90%)
- Does not compete with food crops/oils
- Thrives in wide variety of environments
- Moderate land yields
 - Rainfed: 350 650 kg oil/ha/yr
 - Irrigated: 800 1200 kg oil/ha/yr
- Industry focus on improving sustainability
 - 2016: 'Project Pragati' Sustainable Castor Initiative
 - 2019: Sustainable Castor Association
 - 2020: Sustainable Castor Caring for Environmental and Social Standards (SuCCESS) Code

Castor oil is essential to cosmetics and personal care

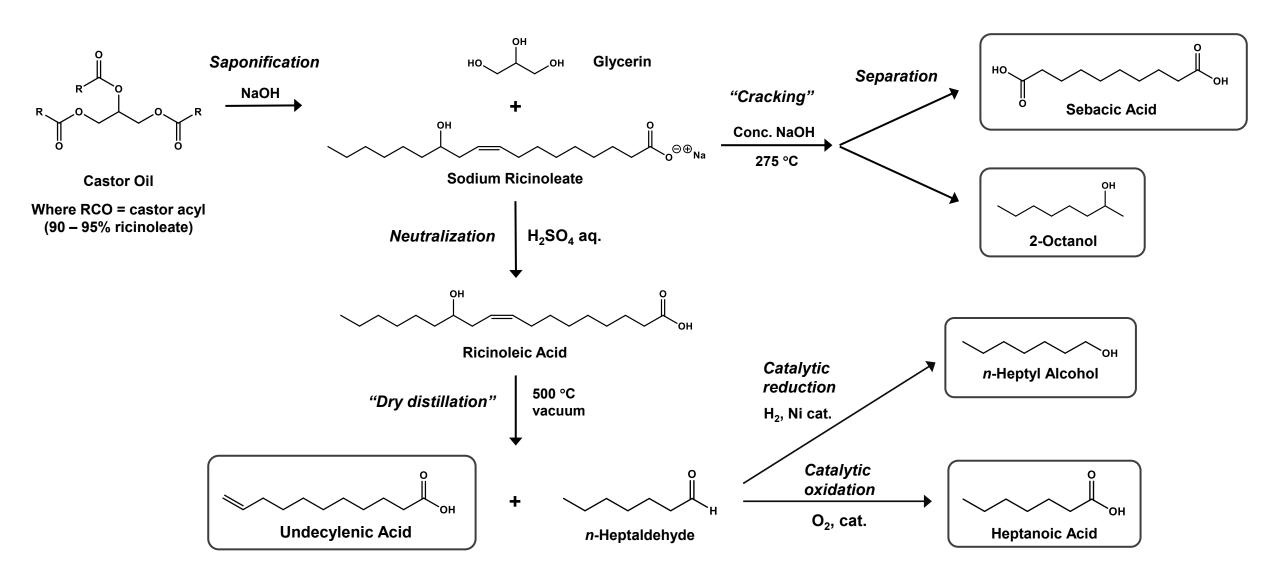

- Over 300 different ingredients (INCI Names) directly derived from castor oil or its C₁₈ fatty acids
- Functions include emollients, emulsifiers, film formers, and surfactants


Ricinus communs (Castor) Seed Oil and Derivatives

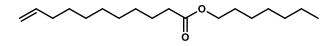
132 INCI Monographs

- Hydrogenates
- Simple/Complex Esters
- Ethoxylates
- (Co)polymers

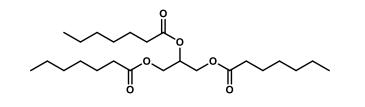
Ricinoleic Acid and Derivatives 93 INCI Monographs


Hydroxystearic Acid and Derivatives

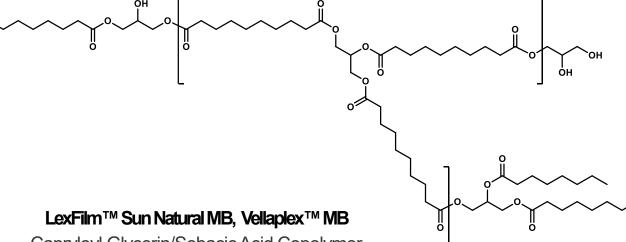
87 INCI Monographs


- Salts
- Amides
- Simple/Complex Esters
- Ethoxylates
- (Co)polymers

Sustainable castor oil yields many useful starting materials


Kudchadker, A. P.; Kudchadker, S. A.; Singh, D. K. Castor Oil Cracking Products, In Encycl. Chem. Process Design, Vol. 6, Marcel Dekker, Inc.: New York, 1978, pp 401 – 419.

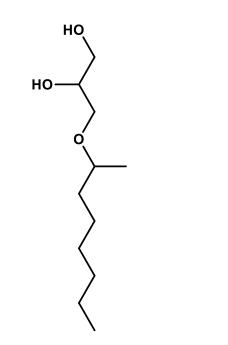
100% biobased, high-performance ingredients from castor



LexFeel[™] Natural Heptyl Undecylenate

LexFeel[™] N Series MB Diheptyl Succinate (and) Capryloyl Glycerin/ Sebacic Acid Copolymer

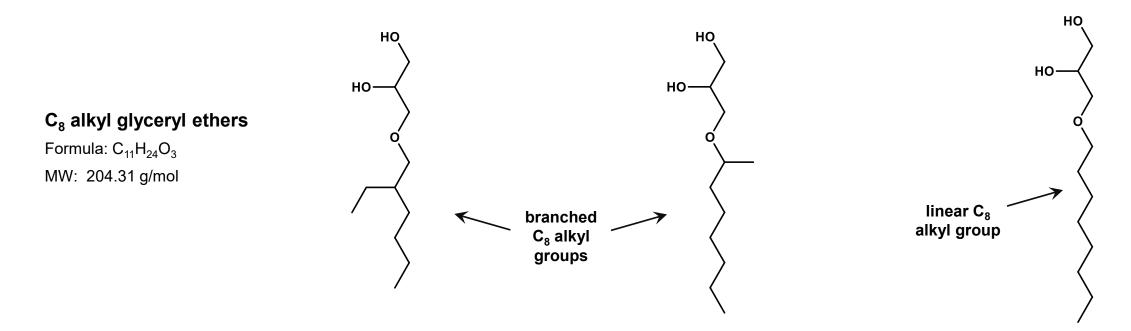
SustOleo[™] MCT Triheptanoin



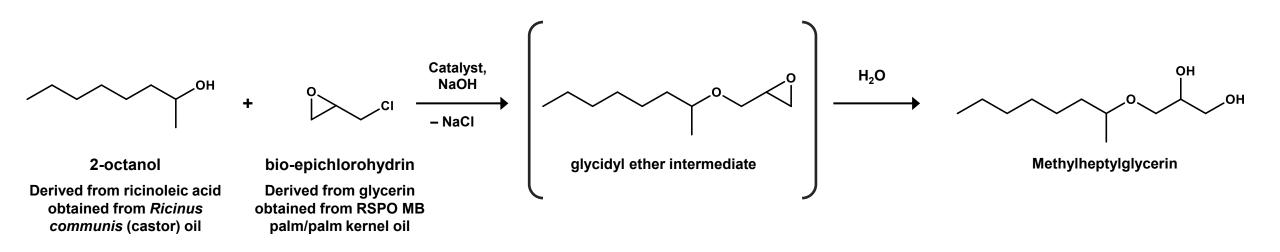
SustOleo[™] DCS **Diisooctyl Succinate**

Capryloyl Glycerin/Sebacic Acid Copolymer

Sustainable alternatives to silicones and petro-based ingredients for SKIN, SUN, and HAIR CARE


Lexgard[®] Natural MHG MB: Methylheptylglycerin

3-[(1-Methylheptyl)oxy]-1,2-propanediol CAS No. 182015-50-5 INCI: Methylheptylglycerin


- MHG is the first biobased <u>branched</u> C₈ glyceryl ether
- Medium-chain terminal diol (MCTD) \rightarrow multifunctional
- Nonionic, amphiphilic compound surface/interfacial activity aids in wetting, solubilization
- Hurdle functions contribute preservation benefits:
 - Enhances cell permeability for biostatic effect (not biocidal)
 - Reduces water activity

Methylheptylglycerin: A natural analog of Ethylhexylglycerin

INCI Name	Ethylhexylglycerin	Methylheptylglycerin	Caprylyl Glyceryl Ether
C ₈ source	Petrochemical	Castor	Palm Kernel/Coconut
Biobased content	0%	100%	100% (if bio-ECH used)
Form at 20 °C / Melt Temp	Liquid / –13 °C	Liquid / –15 °C	Solid / 24 °C
Log K _{ow} (calc.)	1.93	1.85	1.95
Reported Functions	Deodorant, Skin Conditioning	Deodorant, Humectant, Skin Conditioning	Surfactant – Cleansing, Foam Boosting

Methylheptylglycerin (MHG) synthesis

- Utilizes same manufacturing route as ethylhexylglycerin
- 100% biobased (plant) carbon by ¹⁴C radiocarbon dating USDA BioPreferred[®] certified
- 100% naturally-derived per ISO 16128 standard, COSMOS certified
 - Allowed reactions, i.e. etherification and hydrolysis
 - Readily biodegradable (OECD 301B)

MHG protects well against bacteria and yeast

Preservation efficacy (PE) criteria: USP 51 < PCPC < EP-B < EP-A

Screening Formula: Natural O/W Lotion Base

INCI Name	Formula Wt%
Water	Q.S. to 100.00
Triheptanoin	5.00
Heptyl Undecylenate	5.00
Glyceryl Stearate SE	4.00
Hydrogenated Rapeseed Oil	3.00
Glycerin	3.00
Xanthan Gum	0.30
Methylheptylglycerin	0.50 – 1.00
Citric Acid	Q.S. to pH 5.0 ± 0.2 or pH 6.5 ± 0.2

pH 5.0, unpreserved control

Log₁₀ CFU/g						
	S.		Р.	C.	А.	
	aureus	E. coli	aeruginosa	albicans	brasiliensis	
Inoculum						
level	6.04	6.04	6.03	5.02	5.00	
Day 2	5.00	5.00	5.00	5.00	3.41	
Day 7	4.11	5.00	<1.00	5.00	3.34	
Day 14	1.78	5.00	<1.00	5.00	2.61	
Day 21	<1.00	5.00	<1.00	5.00	2.60	
Day 28	<1.00	5.00	<1.00	5.00	2.32	

FAIL FOR ALL CRITERIA

pH 6.5, unpreserved control

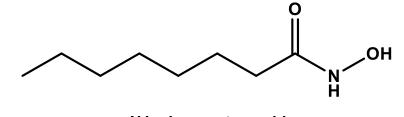
Log₁₀ CFU/g						
	S.		Р.	C.	А.	
	aureus	E. coli	aeruginosa	albicans	brasiliensis	
lnoculum level	6.02	6.04	6.02	5.02	5.00	
Day 2	5.00	5.00	5.00	5.00	3.20	
Day 7	4.26	5.00	5.00	5.00	3.11	
Day 14	2.62	5.00	5.00	5.00	1.90	
Day 21	<1.00	5.00	5.00	5.00	<1.00	
Day 28	<1.00	5.00	5.00	5.00	<1.00	

FAIL FOR ALL CRITERIA

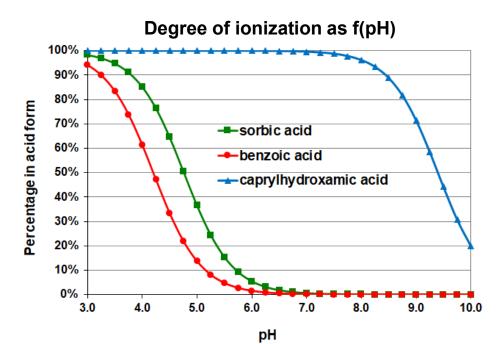
pH 5.0, 0.50% MHG

Log ₁₀ CFU/g							
	S.		Ρ.	С.	А.		
	aureus	E. coli	aeruginosa	albicans	brasiliensis		
Inoculum							
level	6.04	6.04	6.03	5.02	5.00		
Day 2	<1.00	<1.00	<1.00	<1.00	3.53		
Day 7	<1.00	<1.00	<1.00	<1.00	3.32		
Day 14	<1.00	<1.00	<1.00	<1.00	3.28		
Day 21	<1.00	<1.00	<1.00	<1.00	3.28		
Day 28	<1.00	<1.00	<1.00	<1.00	3.23		

PASS FOR USP 51, PCPC, EP-B


pH 6.5, 1.00% MHG

	Log₁₀ CFU/g						
	S.		Р.	C.	А.		
	aureus	E. coli	aeruginosa	albicans	brasiliensis		
Inoculum							
level	6.18	6.04	6.02	5.02	5.00		
Day 2	3.15	<1.00	<1.00	<1.00	2.97		
Day 7	<1.00	<1.00	<1.00	<1.00	2.91		
Day 14	<1.00	<1.00	<1.00	<1.00	2.59		
Day 21	<1.00	<1.00	<1.00	<1.00	2.38		
Day 28	<1.00	<1.00	<1.00	<1.00	1.95		


PASS FOR USP 51, PCPC, EP-A

Boosting with Caprylhydroxamic Acid (CHA)

- CHA is a 100% naturally-derived <u>chelating agent</u> based on C₈ fatty acid (coconut)
- CHA provides three hurdles from one ingredient:
 - Chelating agent: sequesters essential nutrients for microorganisms
 - Organic acid: CHA $pK_a \approx 9.4$, thus it retains efficacy above neutral pH
 - **Medium chain amphiphile:** similar character to MCTDs (Log K_{OW} = 1.7)
- CHA combinations with MCTDs provide broad spectrum preservation efficacy, esp. against yeast and mold
 - Typical use level = 0.10 0.15 wt% CHA in formulation
 - Stable from pH 4 8 under accelerated conditions (12 wk at 40 °C)

N-hydroxyoctanamide INCI: Caprylhydroxamic Acid

CHA boosts efficacy of MHG for stronger broad spectrum protection

Screening Formula: Natural O/W Lotion

INCI Name	Formula Wt%
Water	Q.S. to 100.00
Triheptanoin	5.00
Heptyl Undecylenate	5.00
Glyceryl Stearate SE	4.00
Hydrogenated Rapeseed Oil	3.00
Glycerin	3.00
Xanthan Gum	0.30
Methylheptylglycerin	0.70 – 1.00
Caprylhydroxamic Acid	0 – 0.15
Citric Acid	Q.S. to pH 5.0 ± 0.2 or pH 6.5 ± 0.2

pH 6.5, 1.00% MHG

	Log₁₀ CFU/g						
	S.		Р.	C.	А.		
	aureus	E. coli	aeruginosa	albicans	brasiliensis		
Inoculum							
level	6.18	6.04	6.02	5.02	5.00		
Day 2	3.15	<1.00	<1.00	<1.00	2.97		
Day 7	<1.00	<1.00	<1.00	<1.00	2.91		
Day 14	<1.00	<1.00	<1.00	<1.00	2.59		
Day 21	<1.00	<1.00	<1.00	<1.00	2.38		
Day 28	<1.00	<1.00	<1.00	<1.00	1.95		

PASS FOR USP 51, PCPC, EP-A

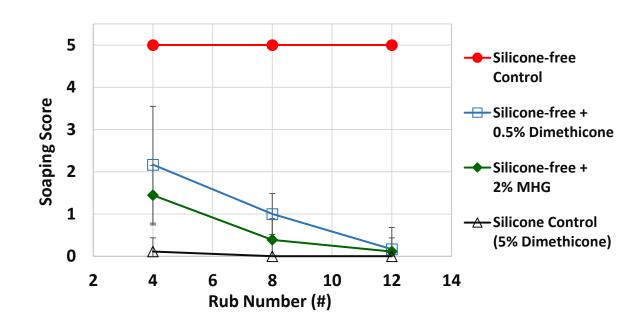
pH 6.5, unpreserved control

Log₁₀ CFU/g						
	S.		Р.	C.	А.	
	aureus	E. coli	aeruginosa	albicans	brasiliensis	
Inoculum						
level	6.02	6.04	6.02	5.02	5.00	
Day 2	5.00	5.00	5.00	5.00	3.20	
Day 7	4.26	5.00	5.00	5.00	3.11	
Day 14	2.62	5.00	5.00	5.00	1.90	
Day 21	<1.00	5.00	5.00	5.00	<1.00	
Day 28	<1.00	5.00	5.00	5.00	<1.00	

pH 6.5, 0.70% MHG + 0.15% CHA

Log ₁₀ CFU/g						
	S.		Ρ.	С.	А.	
	aureus	E. coli	aeruginosa	albicans	brasiliensis	
Inoculum						
level	6.03	6.02	6.01	5.01	5.01	
Day 2	<1.00	<1.00	<1.00	<1.00	1.95	
Day 7	<1.00	<1.00	<1.00	<1.00	<1.00	
Day 14	<1.00	<1.00	<1.00	<1.00	<1.00	
Day 21	<1.00	<1.00	<1.00	<1.00	<1.00	
Day 28	<1.00	<1.00	<1.00	<1.00	<1.00	

PASS FOR USP 51, PCPC, EP-A

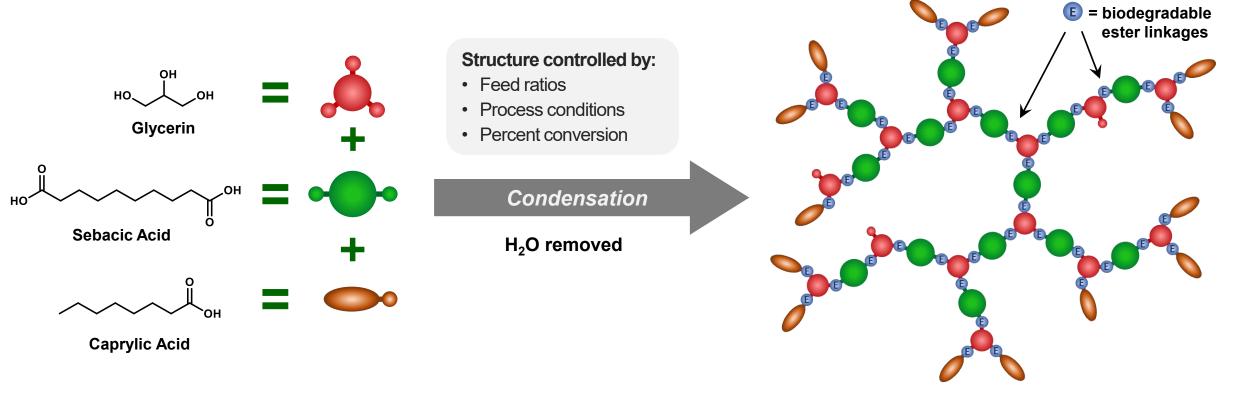

Addition of 0.15% CHA enhances broad spectrum efficacy and enables decreased use level of MHG

FAIL FOR ALL CRITERIA

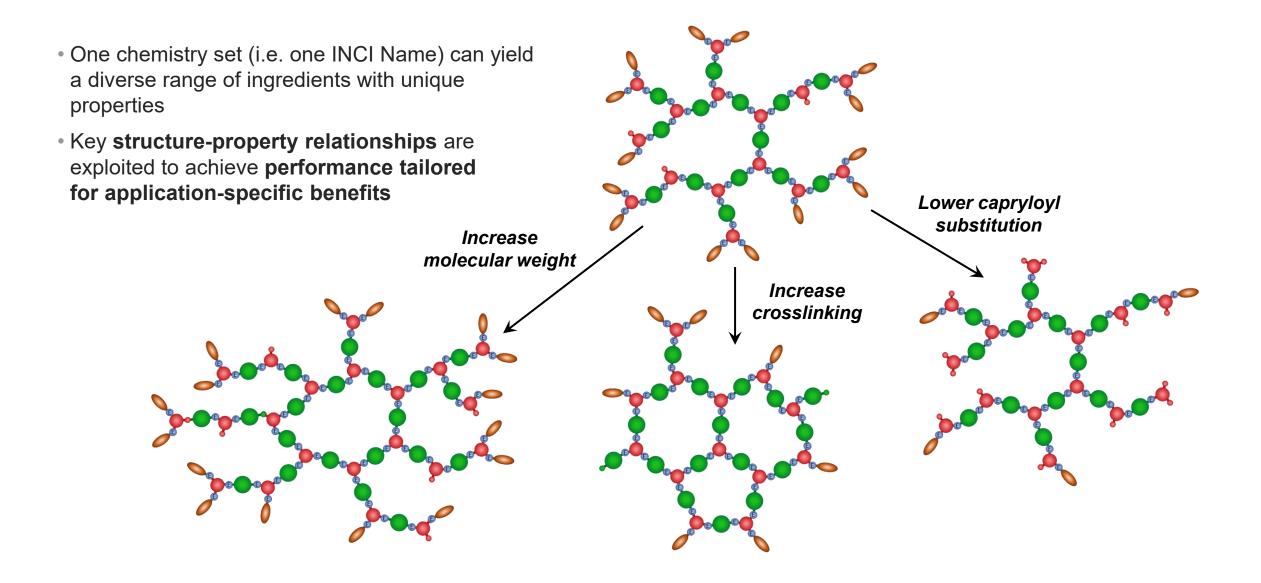
Anti-soaping effect of MHG in silicone-free emulsions

- Cationic lamellar liquid crystal emulsion (O/W)
 - o Silicone: 5 wt% Dimethicone
 - o Silicone-free: 5 wt% Triheptanoin (and) C13-15 Alkane
- Silicone-free exhibits severe soaping on rub-in
- 2% MHG provides same anti-soaping effect as 0.5% Dimethicone

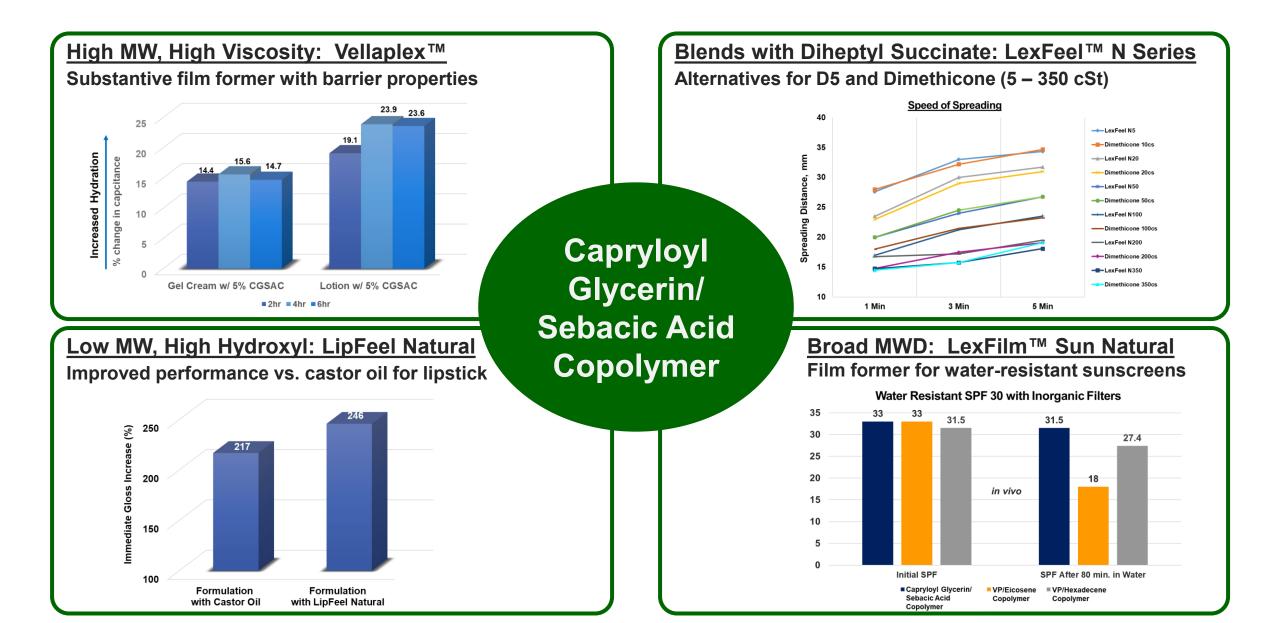
INCI Name	Wt%	Wt%	Wt%	Wt%
Water	71.25	71.25	69.75	70.25
Triheptanoin	8.00	8.00	8.00	8.00
Dimethicone	5.00	-	0.50	-
Triheptanoin (and) C13-15 Alkane	-	5.00	5.00	5.00
Brassica Alcohol	4.00	4.00	4.00	4.00
Cetyl Alcohol	3.00	3.00	3.00	3.00
Glycerin	3.00	3.00	3.00	3.00
Brassicamidopropyl Dimethylamine	2.00	2.00	2.00	2.00
Glyceryl Stearate	2.00	2.00	2.00	2.00
Caprylyl Glycol	1.00	1.00	2.00	-
Methylheptylglycerin	-	-	-	2.00
Aspartic Acid	0.75	0.75	0.75	0.75
TOTAL	100.00	100.00	100.00	100.00



Capryloyl Glycerin/Sebacic Acid Copolymer 100% biobased and readily biodegradable polyester with unique versatility


Capryloyl Glycerin/Sebacic Acid Copolymer (CGSAC)

Polyesters are made from an environmentally-benign condensation process – no solvents, no waste – the only byproduct is water!


Capryloyl Glycerin/Sebacic Acid Copolymer

Designer molecules: versatility of the CGSAC polyester platform

Applications of Capryloyl Glycerin/Sebacic Acid Copolymer

Polyester doesn't necessarily mean plastic!

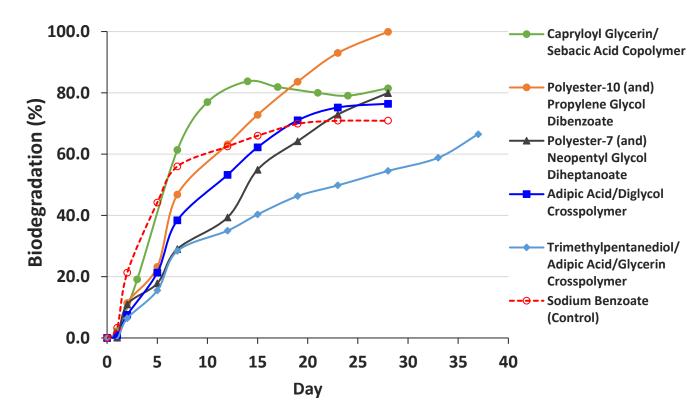
Aromatic Polyesters:

- Petroleum derived
- Not biodegradable
- Solids

Aliphatic Polyesters:

- Many are naturally derived
- May be solids or liquids
- Can be biodegradable and/or environmentally degradable

Bio-absorbable Sutures


Most polyester film formers and emollients are viscous liquids:

Biodegradability of INOLEX polyester film formers

INCI Name	Biodegradation (% at 28 d)	OECD Biodegradability Classification
Polyester-10 (and) Propylene Glycol Dibenzoate	99.9	Ready
Capryloyl Glycerin/ Sebacic Acid Copolymer	81.5	Ready
Polyester-7 (and) Neopentyl Glycol Diheptanoate	79.9	Ultimate
Adipic Acid/Diglycol Crosspolymer	76.4	Ready
Trimethylpentanediol/ Adipic Acid/Glycerin Crosspolymer	66.5* (at 37 d)	Ultimate

OECD 301B Ready/Ultimate Biodegradability

- Backbones with methyl branching biodegrade at slower rate
- Solubilization in ester emollients improves polymer biodegradability

Conclusion

- Castor seed oil demonstrates remarkable versatility as a feedstock for manufacturing sustainable cosmetic ingredients
- Pairing castor-derived building blocks with understanding of structure-property-performance relationships enables the development of advanced ingredients from classic natural chemistry
- Castor will play an important role as market demands continue to drive innovation in highperformance biodegradable ingredients from diverse biobased sources

Care to learn more?

Feel free to contact us!

Julia Benson Technical Account Manager, UK jbenson@inolex.com

Mark Evans Commercial Director, Europe mevans@inolex.com

Mike Fevola Vice President, Head of R&D <u>mfevola@inolex.com</u>