Nanoparticles in Organic Solvents with Polymers
Stability and Consequences Upon Material Synthesis Through Spray Drying

Martin Rudolph, Urs A. Peuker
Outline

1) Motivation
2) Solution Method
3) Preliminary Investigations
4) Theory of Nanoparticle Interactions
5) Experiments - Stability
 a) Destabilization with non-adsorbing PMMA, PC, PS
 b) Stabilization with adsorbing PVB
6) Summary and Conclusion
• Synthesis of highly filled polymer nanoparticle composites ($\phi_{\text{Nano}} > 10\%$)

Magnetic Beads for sorptive Bioseparation

Hickstein, B., Peuker, U.A.
J Appl Poly Sci, 112, 2366
1 Motivation

- Synthesis of highly filled polymer nanoparticle composites ($\phi_{\text{Nano}} > 10\%$)

Composite Micropowder for Micro Injection Molding
1 Motivation

- Synthesis of highly filled polymer nanoparticle composites ($\varphi_{\text{Nano}} > 10\%$)
- Overcoming problem of dispersing (deagglomeration + mixing)
1 Motivation

• Synthesis of highly filled polymer nanoparticle composites ($\varphi_{\text{Nano}} > 10\%$)

• Overcoming problem of dispersing (deagglomeration + mixing)

• We present an alternative modular process with the solution and spray drying method
1) Motivation

2) Solution Method

3) Preliminary Investigations

4) Theory of Nanoparticle Interactions

5) Experiments - Stability
 a) Destabilization with non-adsorbing PMMA, PC, PS
 b) Stabilization with adsorbing PVB

6) Summary and Conclusion
2 Solution Method

- **Polymers**
 - Poly(methyl methacrylate)
 - Poly(vinyl butyral)
 - Poly(bisphenol A carbonate)

- **Nanoparticles**
 - Fe₃O₄ magnetite, superparamagnetic

- **Solvent(s)**
 - Dichloromethane
 - Ethyl Acetate

- **Surfactants**
 - Carboxylic acids (C14 - C18)
2 Solution Method

Fe₂O₄ - Precipitation

Liquid-Liquid-Phasetransfer

Adding solved Polymer

Spray Drying of Organosol

x_{\text{Crystallite}} \approx 15 \text{ nm}

H₂O

organic solvent

Surfactant

Polymer coil

Pressagglomeration

Micro injection molding

June 29th 2011
NanoFormulation 2011

martin.rudolph@mvtat.tu-freiberg.de
1) Motivation

2) Solution Method

3) Preliminary Investigations

4) Theory of Nanoparticle Interactions

5) Experiments - Stability
 a) Destabilization with non-adsorbing PMMA, PC, PS
 b) Stabilization with adsorbing PVB

6) Summary and Conclusion
Investigations with TEM and pc-AFM

• TEM
good distribution for spray dried microcomposite particle

TEM, spray dried particle

PMMA49 RS21 MAG30
3 Preliminary Investigations

Investigations with TEM and pc-AFM

- TEM
 good distribution for spray dried microcomposite particle

- phase contrast AFM
 shows good distribution in an injection moulded sample

 Rudolph, M. *Chem Ing Tech*, 82, 2189 (2010)

- **BUT**: both investigations only have a very narrow field of view

 phase contrast AFM, injection moulded sample

PMMA64 RS06 MAG30

June 29th 2011
NanoFormulation 2011

martin.rudolph@mvtat.tu-freiberg.de
Investigations with TEM and pc-AFM

- phase contrast AFM
 large areas of higher phase values

phase contrast AFM, injection moulded sample

PMMA64 RS06 MAG30

June 29th 2011
NanoFormulation 2011
3 Preliminary Investigations

Investigations broad field pc-AFM and BSE-SEM

- phase contrast AFM
 large areas of higher phase values

- similar „clusters“ for BSE-SEM

back scattering electron SEM, sample as before

PMMA64 RS06 MAG30
3 Preliminary Investigations

Agglomerates? / Primary Particles?

June 29th 2011
NanoFormulation 2011
3 Preliminary Investigations

Investigations broad field pc-AFM and BSE-SEM

PMMA61 – RS09 – MAG30 PMMA40 – RS10 – MAG50

June 29th 2011
NanoFormulation 2011

martin.rudolph@mvtat.tu-freiberg.de
3 Preliminary Investigations

Where are they from?

PMMA61 – RS09 – MAG30

PMMA40 – RS10 – MAG50

June 29th 2011
NanoFormulation 2011

martin.rudolph@mvtat.tu-freiberg.de
3 Preliminary Investigations

Fe$_2$O$_4$ - Precipitation

Liquid-Liquid-Phasetransfer

Adding solved Polymer

Spray Drying of Organosol

X$_{\text{Crystallite}} \approx 15$ nm

H$_2$O

organic solvent

Surfactant

Polymer coil

Pressagglomeration

micro injection molding

June 29$^{\text{th}}$ 2011

NanoFormulation 2011

martin.rudolph@mvtat.tu-freiberg.de
Outline

1) Motivation
2) Solution Method
3) Preliminary Investigations
4) Theory of Nanoparticle Interactions
5) Experiments - Stability
 a) Destabilization with non-adsorbing PMMA, PC, PS
 b) Stabilization with adsorbing PVB
6) Summary and Conclusion
• strong VAN DER WAALS attraction leads to agglomeration

• stabilization against agglomeration with surfactants by liquid-liquid phase-transfer

Machunsky, S. *Coll & Surf A*, 348, 186 (2009)

surfactant of choice: ricinoleic acid

surfactant of choice: ricinoleic acid

• strong VAN DER WAALS attraction leads to agglomeration

• stabilization against agglomeration with surfactants by liquid-liquid phase-transfer
4 Theory of Nanoparticle Interactions

\[h = \frac{H}{r} \]

\[E_{\text{vdW Attraction}} = -\frac{C_H}{6} \left[\frac{2}{h^2 + 4h} + \frac{2}{(h+2)^2} + \ln \left(\frac{h^2 + 4h}{(h+2)^2} \right) \right] \]

\[E_{\text{entrop Repulsion}} = \begin{cases}
2 \cdot \pi \cdot r^2 \cdot \frac{\Phi}{A_{\text{FattyAcid}}} \cdot k \cdot T \cdot \left(2 - \frac{(h+2) \cdot r}{\delta} \cdot \ln \left(\frac{1+\delta/r}{1+h/2} \right) - \frac{h \cdot r}{\delta} \right) , & \frac{h \cdot r}{2 \cdot \delta} < 1 \\
0 , & \frac{h \cdot r}{2 \cdot \delta} > 1
\end{cases} \]

\[E_{\text{interaction}} = E_{\text{vdW Attraction}} + E_{\text{entrop Repulsion}} + E_{\text{Born}} \]

Rosensweig, R.E. *A.I.Ch.E.Symp.Ser.*, 5, 104 (1965)
4 Theory of Nanoparticle Interactions

\[\Phi = 50\% \]

\[\delta = 2.2 \text{ nm} \]

The thickness of the adsorption layer \(\delta \) is shown for different values of \(E_{\text{interaction}} \) in kT. The graph illustrates the interaction energy \(E_{\text{interaction}} \) as a function of the thickness \(\delta \) and the distance \(H \) in nm.

June 29th 2011
NanoFormulation 2011

martin.rudolph@mvtat.tu-freiberg.de
4 Theory of Nanoparticle Interactions

\[\Phi = 50\% \]

Thickness of adsorption layer \(\delta \)

\[\delta = 2.2 \text{ nm} \]

\[\delta = 0 \text{ nm} \]

\[E_{\text{interaction}} \text{ in } kT \]

\[H \text{ in nm} \]

June 29th 2011
NanoFormulation 2011

martin.rudolph@mvtat.tu-freiberg.de
4 Theory of Nanoparticle Interactions

\[\delta = 2.2 \text{ nm} \]

Surface coverage fraction \(\Phi \)

\[E_{\text{interaction}} \text{ in } kT \]

H in nm

\(\Phi = 0 \)

\(\Phi = 1 \)
• strong \textit{VAN DER WAALS} attraction leads to agglomeration

• stabilization against agglomeration with surfactants by liquid-liquid phase-transfer

• stability effects by \textit{polymer} addition
Depletion interaction – Phase diagrams

June 29th 2011
NanoFormulation 2011
martin.rudolph@mvtat.tu-freiberg.de
Outline

1) Motivation
2) Solution Method
3) Preliminary Investigations
4) Theory of Nanoparticle Interactions
5) Experiments - Stability
 a) Destabilization with non-adsorbing PMMA, PC, PS
 b) Stabilization with adsorbing PVB
6) Summary and Conclusion
5 Experiments – stability

• assessment of the mass concentration of primary particles \(w_{\text{primary}} \)

• centrifugation and determination of the concentration with TGA, Photospectrometer

\[\text{increasing } c_{\text{Poly}} \]

diluted supernatant after centrifugation,

\(x_{\text{primary, supernatant}} < 40 \text{ nm} \)

June 29th 2011
NanoFormulation 2011

martin.rudolph@mvtat.tu-freiberg.de
1) Motivation

2) Solution Method

3) Preliminary Investigations

4) Theory of Nanoparticle Interactions

5) Experiments - Stability
 a) Destabilization with non-adsorbing PMMA, PC, PS
 b) Stabilization with adsorbing PVB

6) Summary and Conclusion
5a Destabilization with non-adsorbing polymers

Destabilization: decreasing primary particle concentration with increasing polymer concentration

$c_{\text{Mag}} = 24.4$ g/l

F in %

$W_{\text{Primary in } \%}$

$c_{\text{Poly in g/l}}$

June 29th 2011
NanoFormulation 2011
kinetics of coagulation: not rapid → fast drying after mixing should reduce large amount of agglomerates

$k_{Mag} = 1.2 \text{g/l}$

$c_{Poly} = 58.9 \text{ g/l}$
5a Destabilization with non-adsorbing polymers

kinetics of coagulation: problem of comparability to stability investigation due to very low colloid concentration

June 29th 2011
NanoFormulation 2011

martin.rudolph@mvtat.tu-freiberg.de

\[c_{\text{Mag}} = 1.2 \text{g/l} \]
\[c_{\text{Poly}} = 58.9 \text{ g/l} \]
5a Destabilization with non-adsorbing polymers

- Nano-Fe$_3$O$_4$ dispersion under microscope with $c_{\text{Mag}} = 1.5$ g/l
- addition of PMMA leads to larger light-optically visible agglomerates, $\tau = 15$ min
• Nano-Fe$_3$O$_4$ dispersion under microscope with $c_{\text{Mag}} = 1.5$ g/l

• addition of PMMA leads to larger light-optically visible agglomerates

• inverted BSE-SEM of spray dried particles PMMA64-RS06-MAG30 show agglomerates as well
Destabilization with non-adsorbing polymers

- similar agglomerate sizes for dispersion and moulded BSE-SEM crosssection
1) Motivation

2) Solution Method

3) Preliminary Investigations

4) Theory of Nanoparticle Interactions

5) Experiments - Stability
 a) Destabilization with non-adsorbing PMMA, PC, PS
 b) Stabilization with adsorbing PVB

6) Summary and Conclusion
5b Stabilization with adsorbing polymer

stabilization: increasing primary particle concentration with increasing polymer concentration

June 29th 2011
NanoFormulation 2011
5b Stabilization with adsorbing polymer

particle size: increase in particle size with adsorbing polymer layer forming, of Langmuir type (line)

June 29th 2011
NanoFormulation 2011

martin.rudolph@mvtat.tu-freiberg.de
adsorption isotherm: Langmuir type
adsorption of PVB on sterically stabilized nanomagnetite

\[\Gamma = \Gamma_{\text{max,PVB}} \cdot \frac{k \cdot c_{\text{Poly}}}{1 + k \cdot c_{\text{Poly}}} \]

\[\Gamma_{\text{max,PVB}} = 0.497 \text{ g/g} \]

\[k = 0.04 \]

June 29th 2011
NanoFormulation 2011
1) Motivation
2) Solution Method
3) Preliminary Investigations
4) Theory of Nanoparticle Interactions
5) Experiments - Stability
 a) Destabilization with non-adsorbing PMMA, PC, PS
 b) Stabilization with adsorbing PVB
6) Summary and Conclusion
Solution and spray drying process is suitable for nanocomposite synthesis.

HOWEVER: nanoparticle interactions have to be considered.

Added, solved polymers will influence nanoparticle interaction.

Stabilization through adsorbing polymers reveals suitability of the solution method.
Thanks for your interest!

Meet me at poster D-PO3-20
» Nanofix – Nanoparticle-wax-formulations as Additives for Extruder Compounding«
Filler Homogeneity – SEM Analysis ($F = 30\%$)

B-SEM cross section → **Binary** → **Voronoï** → **Coefficient of variance - cov**

- **Compounding**
 - $\text{cov}(A) = 5.45$

- **Solution/Drying**
 - $\text{cov}(A) = 0.98$

June 29th 2011
NanoFormulation 2011
martin.rudolph@mvtat.tu-freiberg.de
Phase contrast AFM analysis

PMMA61 – RS09 – MAG30

PMMA49 – RS21 – MAG30

June 29th 2011
NanoFormulation 2011

Rudolph, M. CIT, 82, 2189 (2010)
martin.rudolph@mvtat.tu-freiberg.de
Phase contrast AFM analysis

June 29th 2011
NanoFormulation 2011

martin.rudolph@mvtat.tu-freiberg.de
• Composition

\[D \text{ – surfactant (detergent) ratio} \]

\[D = \frac{m_{\text{surfactant}}}{m_{\text{nano}}} \]

\[n_{\text{nano}} \cdot (\text{surfactant} + m_{\text{polymer}}) \]

\[\text{polymer concentration} \]

\[\phi_{\text{Poly}} \]

\[x \text{ in nm} \]

\[0.00 \quad 0.05 \quad 0.10 \quad 0.15 \quad 0.20 \quad 0.25 \]

\[D \text{ in g/g} \]

June 29th 2011
NanoFormulation 2011
martin.rudolph@mvtat.tu-freiberg.de
Supplemental

- Interparticle Distance

\[ID = x \cdot \left[\left(\frac{\pi}{3 \cdot \varphi_{nano}} \right)^3 \cdot \sqrt{3/4} - 1 \right] \]

\[\varphi_{nano} = \frac{\rho_{polymer}}{\rho_{nano}} \left[\frac{1}{F} + D \left(\frac{\rho_{polymer}}{\rho_{surfactant}} - 1 \right) - 1 \right]^{-1} \]
$c_{\text{Poly}} = \frac{\rho_{\text{DCM}} \cdot \left[c_{\text{solid}} - c_{\text{solid}} \cdot F \cdot (1 + D) \right]}{1 - c_{\text{solid}}}$
Supplemental

- Gravimetric Characterisation with TGA/FTIR

-- characteristic mass-loss

\[
\chi_{\text{Stokes}} = (20 \pm 2) \text{ nm}
\]

\[
W_{\text{Mag,overall}}
\]

\[
W_{\text{Mag,centri}}
\]
Supplemental

- Segregation Effects with Spray Drying

<table>
<thead>
<tr>
<th>fraction</th>
<th>$x_{50,3}$</th>
<th>w_{Mag}</th>
<th>$\Delta m(600^\circ C-800^\circ C)$ / w_{Mag}</th>
<th>yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>cylinder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyclone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TGA

PSD

June 29th 2011
NanoFormulation 2011

martin.rudolph@mvtat.tu-freiberg.de
Supplemental

- Spray Drying
- Büchi lab scale spray dryer co-current, inert-loop
- $x_{50, \text{composite}} \approx 4 \, \mu m$
- up to 100g/h composites

June 29th 2011
NanoFormulation 2011

martin.rudolph@mvtat.tu-freiberg.de