High-throughput synthesis and characterization of micro-capsules
Outline

• Introduction
• Encapsulation technologies
• Automated synthesis of micro-capsules
• Automated characterisation of micro-capsules
• Case study
• Conclusions
Introduction

- Flamac
 Division of the Strategic Initiative Materials in Flanders
- Started in 2005
- Mission
 Development and application of unique high-throughput technologies for applied materials R&D
- Activities
 Strategic long-term research and contract R&D
Introduction

• **Main benefits of using high-throughput technologies**
 – Stay competitive
 – Increase productivity
 – Improve reproducibility
 – Serendipity
Introduction

• Approach

High-throughput characterization

Design of Experiment
Formulation
Application
Devices

Automation

Data-mining
Introduction

• A wide range of applications

- Consumer products
- Flow efficiency coatings
- Solar materials
- Corrosion protection coatings
- Functional nano-particles
- PU elastomers
- Printing inks
- Encapsulation
Encapsulation technologies

• **Micro-encapsulation by chemical methods**
 – Based on polymerisation *or* polycondensation mechanisms
 – Interfacial and in situ polymerisation processes gained most scientific and industrial attention
 – Important alternatives to coacervation

Boh *et al.*, Bioencapsulation Innovations, March 2013
Encapsulation technologies

• **Requirements for micro-capsules**

 – Mechanical properties
 • Robust to survive their manufacture
 • Brittle to break when external trigger
 – Thermal stability
 – Resistance to solvents
 – Good shelf life to insert them into formulations or materials

Very often a large number of parameters need to be optimized!
Automated synthesis of micro-capsules

- **Automated synthesis platform**
 - From manual synthesis to an automated protocol
Automated synthesis of micro-capsules

- Automated synthesis platform

- Liquid handling & pH trimming unit
- Powder dosing unit
- Viscous liquid dosing unit
- High shear mixer
- Custom-made synthesis reactor

InEn, 12 December 2014
Automated synthesis of micro-capsules

- Different types of micro-capsules possible

Melamine-formaldehyde shell

Polyurea shell

Polycondensation

Interfacial polymerization
Automated characterisation of microcapsules

- Overview
 - Mechanical properties
 - Morphology
 - Particle size distribution
 - Leaching of active ingredients
 - ...

InEn, 12 December 2014
Automated characterisation of microcapsules

- **Mechanical properties**
 - Using nano-indentation technique
 - Visco-elastic properties
 - Stiffness
 - Elasticity
 - Hardness
 - Flat punch tip (100 µm width)
Automated characterisation of microcapsules

- **Mechanical properties**
 - Melamine formaldehyde micro-capsules

⇒ effect of size on capsule stiffness

![Bar chart showing the effect of diameter on capsule stiffness](chart.png)
Case study

- **Melamine formaldehyde micro-capsules**
 - Encapsulation of cyclohexane
 - Multi-parameter space to be optimized
Case study

- **Melamine formaldehyde micro-capsules**
 - **Recipe**

Reactor A
- pH adjustment
- Heating profile
- Reaction

Reactor B
- High shear mixing
- pH adjustment

Condensation
- pH adjustment during pre-condensate solution to pre-emulsion
- Heating profile
- Condensation reaction
Case study

- Melamine formaldehyde micro-capsules
 - Impact of process parameters on size distribution
Case study

- **Melamine formaldehyde micro-capsules**
 - Impact of recipe on morphology

PSMA + PVA 5%
Ratio shell/core = 1

PSMA 5%
Ratio shell/core = 1

PSMA 2.5%
Ratio shell/core = 1

(*) PSMA: poly(styrene-maleic anhydride)
PVA: polyvinyl alcohol
Conclusions

• A unique platform for automated capsule synthesis and characterization, allowing
 – Composition screening
 – Process conditions screening

• Speeding-up the complete material development chain
Acknowledgements

• Flamac
 – Erwin Bauters
 – Pieter Castelein
 – Geoffrey Coppens
 – Tom Parasote

• UGent
 – Prof. Filip Du Prez
 – Dr. Guadalupe Rivero
 – Dr. Seda Cakir

See also poster of Seda Cakir
“Microcapsules for Self-Healing”!
Thank you for your attention