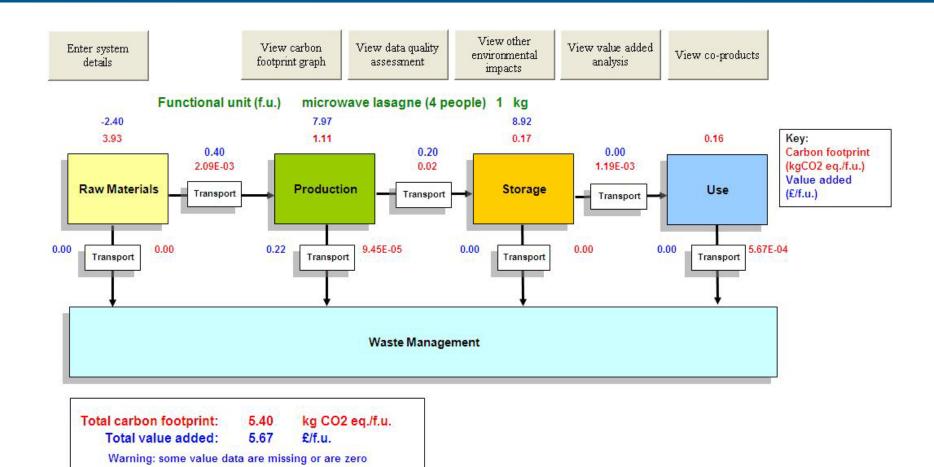
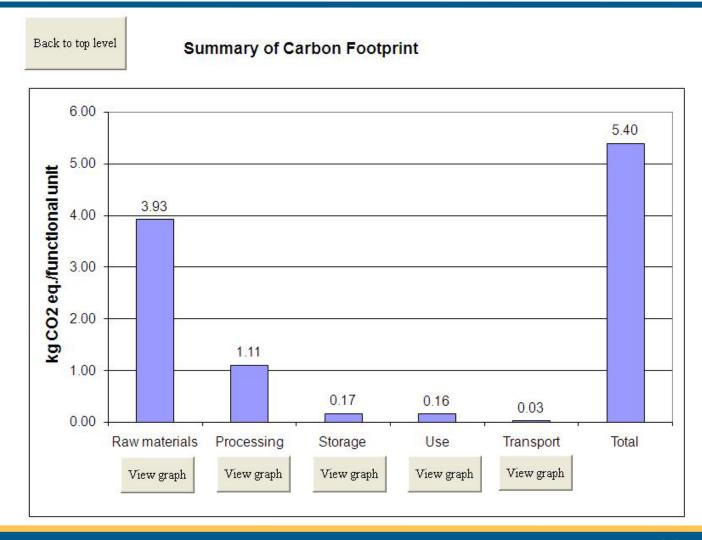


Carbon Footprinting the Lifecycle of Products – the CCaLC Tool

Mike Pitts
Chemistry Innovation


What is CCaLC?

- A carbon footprinting tool with 'difference'
- Enables quick and easy estimations
- A powerful tool for reducing and managing carbon footprints
- Follows internationally accepted methodologies
 - ISO 14044 and PAS2050
- Simple to use by non-experts
- Developed in close collaboration with industry
- Free of charge!


Questions explored within CCaLC

- What is the carbon intensity of a supply chain/product/process?
- Where are the 'hot spots'?
- What are the optimum low-carbon options for reducing the carbon intensity?
- What would be the cost? And value added?
- How would other environmental impacts change?

CCaLC lifecycle footprinting

Raw Materials

Back to top level

Define materials

Define energy

Define packaging

Define waste

Define land use change

View carbon footprint graph

Stage: Raw Materials

Total carbon footprint for stage:

3.93

kg CO₂ eq/f.u.

Total costs for stage:

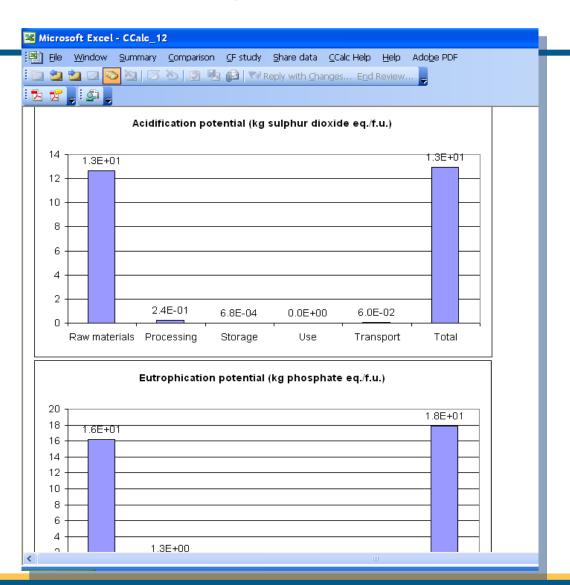
2.40

/f.u.

£

Raw material	Amount (kg/f.u.)	CO2 eq. (kg/kg raw material)	CO2 eq. (kg/f.u.)	Cost (£/kg raw material)	Cost (£/f.u.)	Used in which processing stage?
Beef minced meat at slaughterhouse	0.50	4.35	2.18	4.10	2.05	Stage1
Cheese	0.10	11.30	1.13	1.89	0.19	Stage2
Olive oil	0.03	2.94	0.09	2.13	0.06	Stage1
Onions	0.10	0.50	0.05	0.40	0.04	Stage1
Pasta	0.15	0.81	0.12	0.15	0.02	Stage2
Salads, green	0.01	3.30	0.03	0.20	2.00E-03	Stage1
Tomatoes	0.10	3.29	0.33	0.30	0.03	Stage1
Vegetables, processed	0.01	0.30	3.00E-03	0.15	1.50E-03	Stage1
		Total:	3.93	Total:	2.40	

Energy type	Amount (MJ/f.u.)	CO2 eq. (kg/MJ energy)	CO2 eq. (kg/f.u.)	Cost (£/MJ energy)	Cost (£/f.u.)
	W. 100 1 100	Total:	0.00	Total:	0.00


Packaging for raw materials	Amount (kg/f.u.)	CO2 eq. (kg/kg packaging)	CO2 eq. (kg/f.u.)	Cost (£/kg packaging)	Cost (£/f.u.)	Going to which processing stage?
		Total:	0.00	Total:	0.00	

Waste	Amount (kg/f.u.)	CO2 eq. (kg/kg waste)	CO2 eq. (kg/f.u.)	Cost (£/kg waste)	Cost (£/f.u.)
	A. 20-32 St.	Total:	0.00	Total:	0.00

Other environmental impacts

- Acidification
- Eutrophication
- Ozone depletion
- Photochemical smog
- Human toxicity

Databases and case studies

- Databases
 - Materials
 - Energy
 - Transport
 - Packaging
 - Waste

- Case studies
 - Chemicals & related
 - Food & drink
 - Bio-feedstocks
 - Biofuels

Over 4000 datasets

Over 30 case studies

Companies who have piloted CCaLC

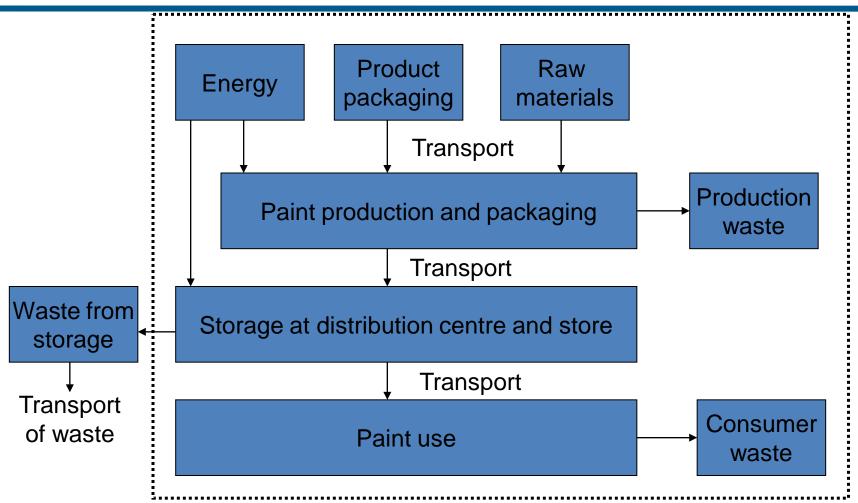
Company Feedback – reported benefits

- Modelling options what ifs
- Accessible to all
- Transparent you can see cause and effect
- Identifies hotspots and priorities
- Provides focus
- Very good tool for carbon footprint data analysis
- Can be as simple or as detailed as required as good as the data input quality
- Compliant with PAS2050 guidelines
- Provides for other environmental impacts
- Easily amended data changes simple

Company Feedback - Results

- Destroyed preconceptions
 - e.g. Kellogg's total carbon footprint
 - distribution 4%
 - raw materials 42%
- Enabled design of more sustainable products
- Modelling options what ifs
- Accessible to all
- Transparent you can see cause and effect
- Can be as simple or as detailed as required
- Created focus on energy / efficiency priorities
- Mechanism to engage with suppliers
- Without consultants or software
- And you don't <u>have</u> to Carbon Label...

Case Study – Paint Formulation



Objectives of the study

- To calculate the carbon footprint of water-based paint
- To consider the influence of the unit of analysis on the carbon footprint
- To identify hot spots
- To consider the impact of consumer behaviour on the carbon footprint

System boundary

Functional units

Production of 1000 kg of water-based paint

Covering the area of 50 m²

Assumptions

Raw materials

TiO₂ 20 - 40%

Filler 10 – 30%

Additives 50%

Distribution

Ambient storage

5 days in DC

10 days in store

Use phase

90% use rate

6 m²/kg market entry

10 m²/kg high performance

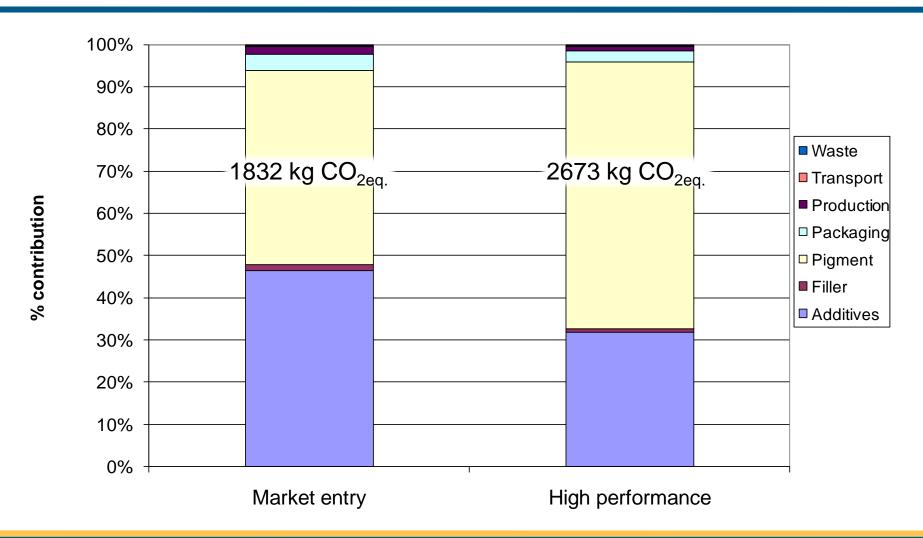
Packaging unit

10 L plastic container Wrap film

Energy

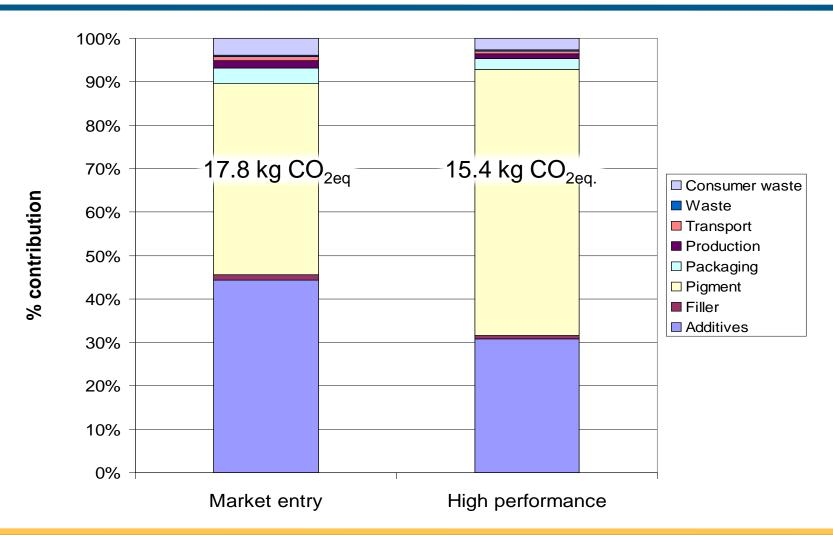
Electricity UK

Transport

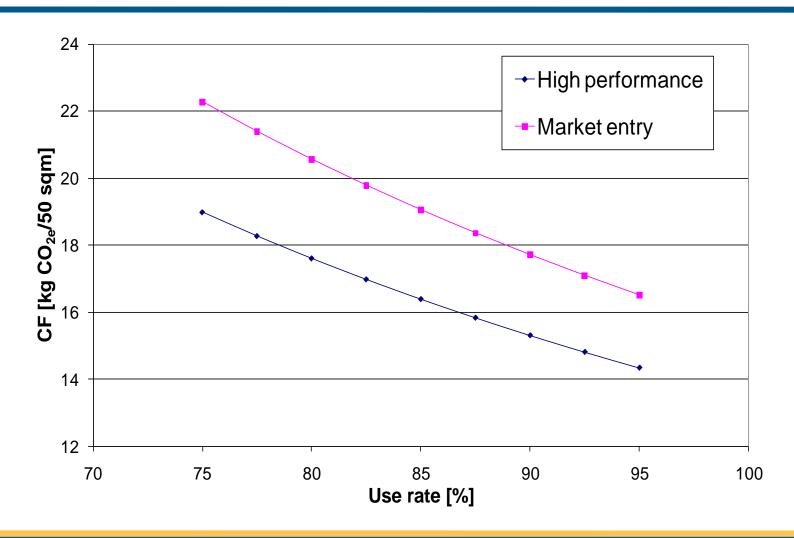

22 t truck 100 km

Waste

Landfill



Carbon footprint of 1000 kg paint



Carbon footprint per 50 m² covered

CF versus use rate at consumer

Conclusions

- Carbon Footprint of different formulations differ significantly
- Functional unit important to define the 'best' formulation
- Raw materials are typically paramount for the Carbon Footprint of formulated products
- Databases for raw materials need to be improved
- Consumer behaviour is important

www.ccalc.org.uk www.chemistryinnovation.co.uk

mike.pitts@ciktn.co.uk