Dissolvine® master the elements

Dissolvine® GL

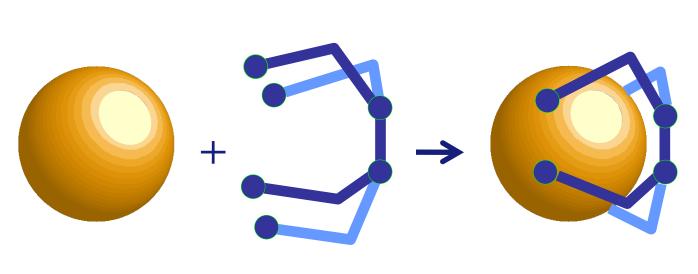
the green and sustainable solution for a diverse application base

Black & Green Conference University of York November 10, 2010

Overview

- AkzoNobel in Chelates
- Chelates in Cleaning
- Attributes of the ideal Chelate
- Dissolvine® GL product characteristics
 - Strong
 - Versatile
 - Safe
 - Sustainable
- Conclusions

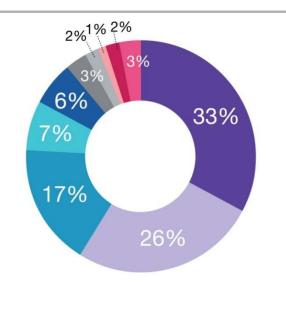
EDTA
DTPA
GLDA
HEDTA
HEDTA
PDTA
CSA
EDG (HEIDA)


AkzoNobel's commitment to Dissolvine® Chelates

The **only** chelate manufacturer with integrated global manufacturing New Plant in China operational as of November, 2010

Why use Chelates in cleaning? From Chelos (greek) "crab"

Metal ion + Chelating agent


Metal Chelate

Preventing "hard" metal (Ca, Mg) salt precipitation
Reducing the effect of M2+ ions resulting in better surfactant performance
Controlling metal (Cu, Mn, Fe) decomposition, resulting in longer shelf life
Boosting preservative or biocidal performance

Main Applications

Micronutrients

- Detergents & Cleaners
- Pulp & Paper
- Photography

Oilfield

- Food
- Metal Plating
- Pharmaceuticals
- Cosmetics, Health & Personal Care

Market size € 510 mln

Others

Why look for a new chelate?

Traditional chelates / builder components are under intense scrutiny:

- EDTA (not readily biodegradable)
 - **NTA** (potential carcinogen)
- **DTPA** (not readily biodegradable)

What about other alternatives?

Alternatives solutions come with constraints:

Phosphates

Cause environmental concerns

Phosphonates & Polymeric components

- Too weak to bind hard water ions
- Not enough detergency power

Citrates

• Not strong enough

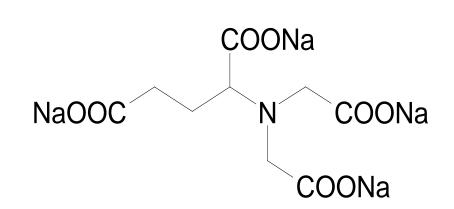
Zeolites

• Not soluble at all in cleaning

New Chelates such as IDS, HEIDA, EDDS

• Not strong enough for hard water ions

Attributes of the 'Ideal Chelate'


- Readily biodegradable
- Good tox and eco tox profiles (safe for all)
- Natural or renewable source
- Sustainable

• And it has to work...

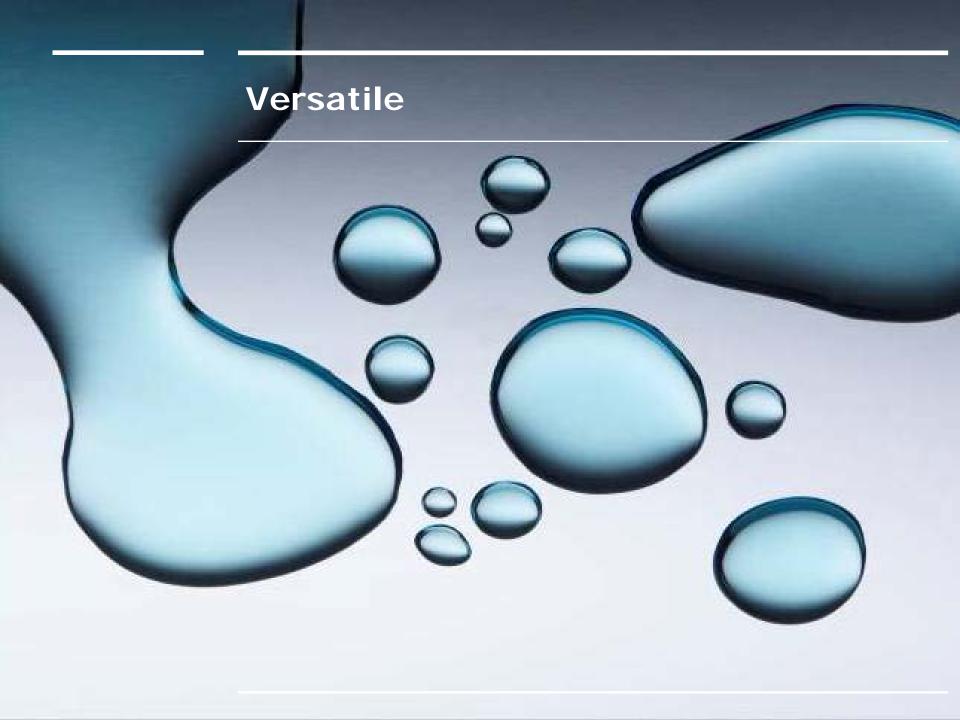
Dissolvine[®] GL (GLDA) Our eco-friendly chelating agent

What is GLDA?

- Full chemical name: Glutamic acid, N,N-diacetic acid
- GLDA-Na₄ = Dissolvine[®] GL

Based on sugar (bio)chemistry:

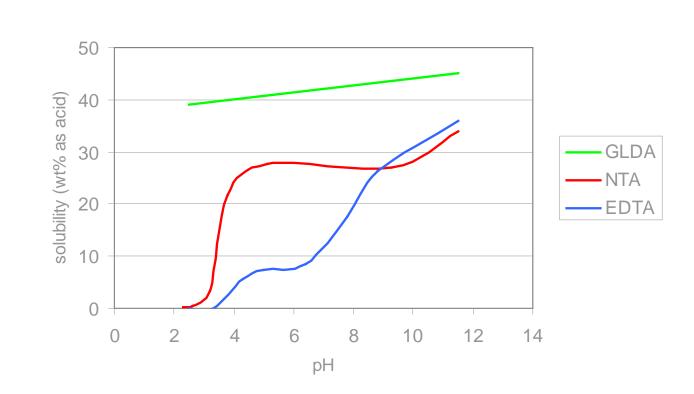
- biochemical conversion of plant material (sugar beet waste) to MSG
- chemical conversion to strong chelating agent



Dissolvine® GL – Calcium Chelating Strength in functional test at pH 10 with competing chelating agent

Conclusion: GLDA is a strong Ca binder

Active pH range for Dissolvine[®] GL

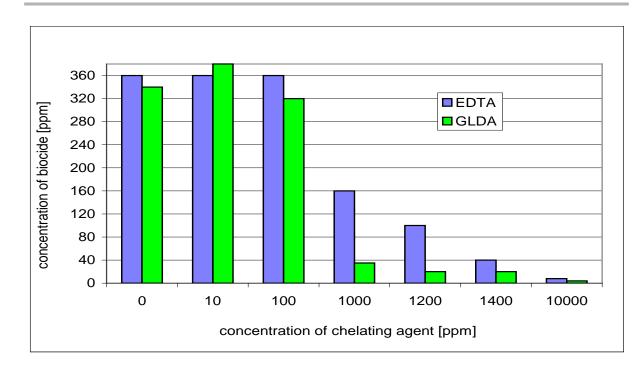

Metal ion	Ca ²⁺	Cu ²⁺	Fe ³⁺	Mg ²⁺	Mn ²⁺	Zn ²⁺
Active pH	6-14 ⁽¹⁾	2-11 ⁽²⁾	2-8 (2)	7-10 (1)	5-10 ⁽²⁾	3-12 ⁽²⁾
range						

- 1. Based on calculations using the conditional stability constants
- 2. Based on experimental data

GLDA is active over a wide pH range

Dissolvine® GL – Solubility in Water (for GLDA: 45w% acid = 61w% Na4-salt)

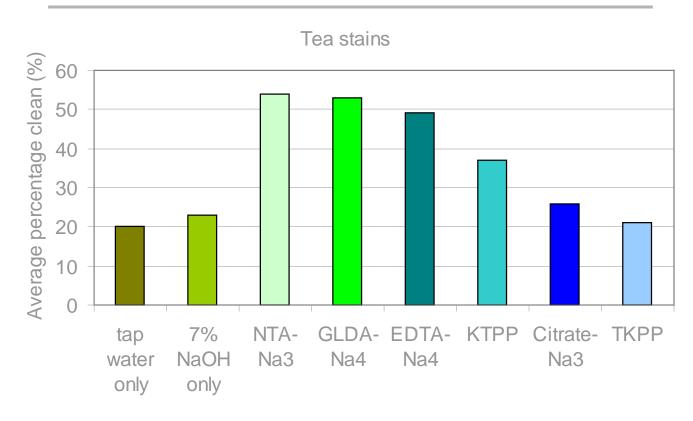
GLDA has excellent solubility in water


Dissolvine® GL – Solubility in Caustic

GLDA has excellent solubility in Caustic

Dissolvine® GL – Biocidal boosting

Pseudomonas aeruginosa (DSM 939, = gram – bacterium) 5% Arquad MCB-50 in concentrate 0,03% protein load, 17°dH water hardness, pH=10 Test method: EN 1276

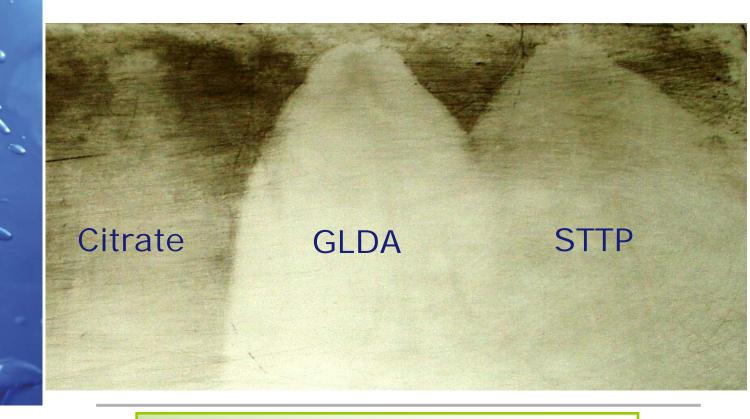

Conclusion: GLDA is more effective

Stain removal in machine dishwashing

Formulation containing 7%NaOH, 11.4% sequestrant, balance demi-water

KTPP: potassium tripolyphosphate TKPP: tetrapotassium pyrophosphate

GLDA is comparable to NTA and better than EDTA or phosphates

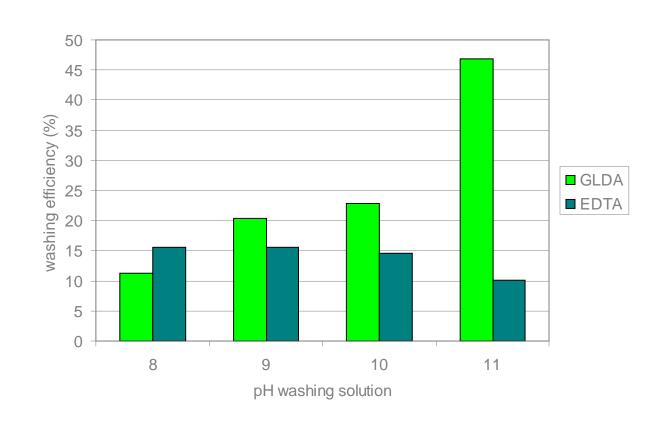

Source Rhone Poulenc patent WO96/22351

Vehicle and engine heavy duty cleaner

At room temperature and without mechanical force

Automotive dirt removal test in *basic* recipe containing various builders and an optimized degreasing surfactant Berol[®] ENV226

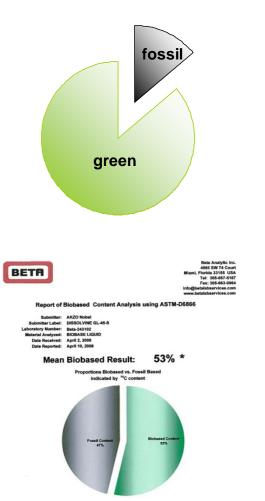
Conclusion: GLDA works best



Oil and fat stain removal

Formulation containing 0.05% non-ionic surfactant, 0.2M Na2CO3, 0.2M

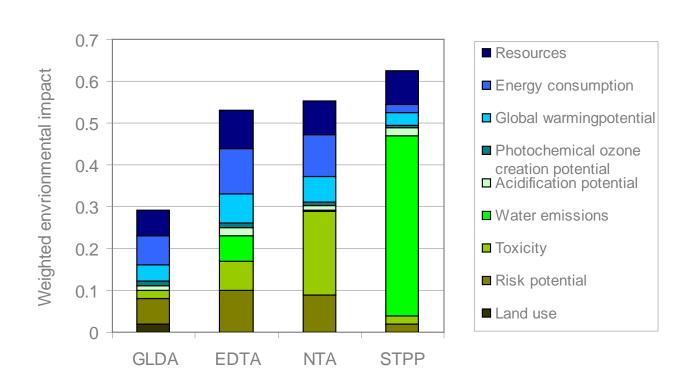
NaHCO3, 0.2% chelate


GLDA is superior to EDTA under alkaline conditions

Small eco-footprint

Dissolvine® GL

- Based on non-fossil raw material:
 - Bra Miljöval protocol of Swedish society for Nature Conservation concludes 86% is based non-fossil origin
- Biobased:
 - Biobased content analyzed by 3rd party = 53% (5 out of 9 plant based carbon atoms)


Small eco-footprint:

 Eco-Efficiency Analysis proves that GLDA is the most 'environmentally benign' chelating agent

Dissolvine® GL – Weighted ecological footprint Eco-efficiency on equal weight basis

Conclusion: GLDA has smallest footprint

Dissolvine ® GL - Biodegradability

Readily biodegradable

- in Closed Bottle Test (OECD 301D)
- imposed by EU detergents regulation

Ultimately biodegradable

100% conversion to CO₂, H₂O, biomass and mineral salts

- Low aquatic toxicity in acute tox tests
 - Rainbow trout, Daphnia Magna and algae EC>100 mg/l
- Low toxicity
 - Low acute oral toxicity (rat): >2000mg/kg
 - Not irritating to skin or eyes
 - Not a skin sensitizer (Guinea pig)
 - Not mutagenic for cells or bacteria
 - Not genotoxic to mice
 - 90 day rate repeated oral dose, result: NOAEL 300 mg/kg/day

Conclusion: No apparent safety issues

Dissolvine® GL – Endorsements

Green Labels

- ECOCERT, Authorized synthetic ingredient
- NaTrue, Accepted Ingredient
- Euroflower
- Blaue Engel
- Nordic Swan
- etc

Dissolvine® GL – Product Range

GL-38

- standard product
- Min 38.0% active ingredient
- <2.5% free NTA

GL-47-S

- high purity product
- Min 47.4% active ingredient
- NTA free

GL-NA-40-S

- acidic product
- Min 40.2% active ingredient
- NTA free

GL-PD-S

- powder of high purity product
- 82% active ingredient
- <0.20% free NTA

The chelating agent of the future is:

AkzoNobel is proud to offer

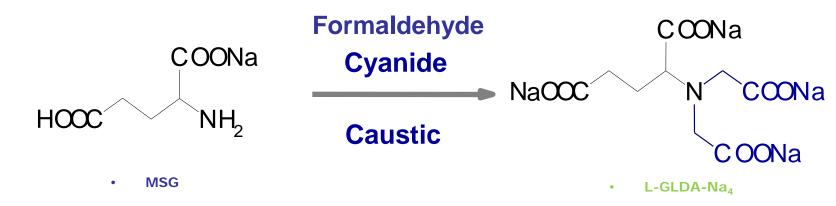
Dissolvine® GL

as the Sustainable Chelate Solution

Thank you for your attention

Dissolvine® GL – Product Info

- For additional information please contact:
 - Tony Minshull
 - tony.minshull@akzonobel.com
 - + 31 33 4676 221


• or visit us at:

www.DissolvineGL.com

- What is GLDA?
 - Full chemical name: Glutamic acid, N,N-diacetic acid
 - GLDA-Na₄ = Dissolvine[®] GL
- Based on sugar (bio)chemistry:
 - biochemical conversion of plant material (sugar beet waste) to MSG
 - chemical conversion to strong chelating agent

