Sustainable Materials in Fast Moving Consumer Goods Formulations

Janet L. Scott Black and Green? Birmingham 14 April 2010

Dove

• Personal care products

Kneipp

CLASSIC

Herbal Body Wash

kaita

• Reduce, reuse, recycle?



Function vs. product

Ecoworx carpet tiles

"100% recyclable. Completely PVC-free. EcoWorx offers three high-performance cradle to cradle backings to meet your every need. Each is backed with a lifetime commercial warranty and an **environmental guarantee** for <u>reclamation and recycling</u>."

http://www.shawcontractgroup.com/Html/EnvironmentalEcoworx

Function

cleaning

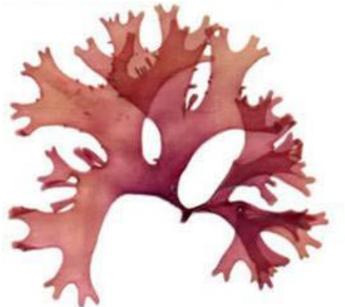
Viscosity / Rheology

- Suspension
- Flow
- Dispensing
- Usability
- Feel

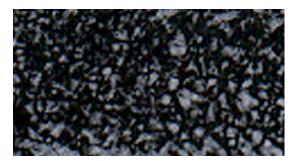
Structuring water

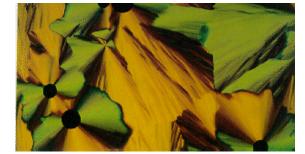
Surfactants and structuring

100 % non-petrochemical Not food competitive Clean derivatisation Biodegradable **Functional** Gentle


Abundant, cheap material

From renewable resources


Environmental & commercial sustainability

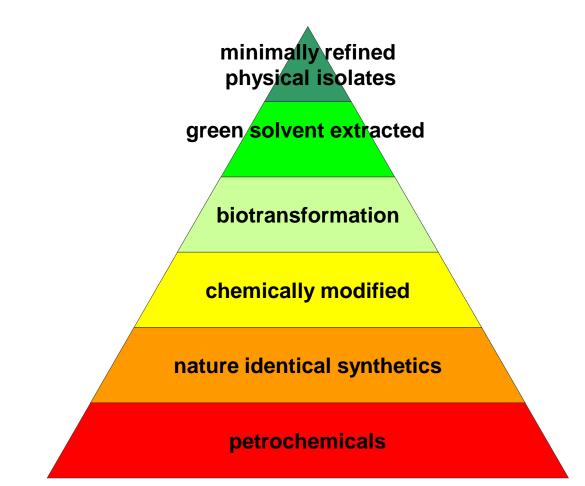

Thickening strategies

 Natural polymers
 e.g. gums, starch, carrageenans

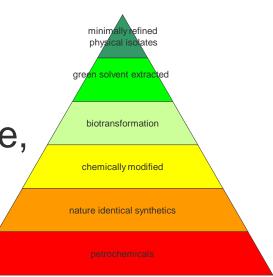
- Synthetic polymers
 e.g. PEGs, acrylate co-polymers
- Surfactant mesophases

hexagonal

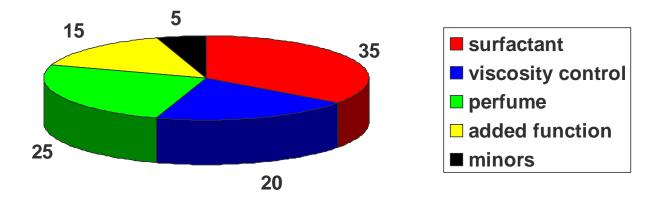
lamellar


Retain function / reduce resource use

The growing "natural" market


Changing context; shift to bio-source

Question for the formulator


- "natural", "nature derived", "renewable" etc. do not equate with "less impact on environment"
- Need to consider scale, energy intensity, competing land requirements etc.
- Do we get the best result by taking existing approaches and substituting individual components?

If you do what you've always done, you'll get what you always got.

Formulation vs. Components

- Substituting individual components is difficult; they have been optimised w.r.t. cost and function
- Function is not as neatly compartmentalised as the diagram suggests; "formulator's art"!
- Need to look at cost and function of <u>formulation</u>, not individual components
- Environmental performance / sustainability is also a function of formulation

Cellulose – an abundant biopolymer

700 000 000 000 *t* = total volume

40 000 000 000 *t* = renewed annually

100 000 000 *t* = feedstock usage p.a.

4 000 000 *t* = dissolving pulp for high \$ applications

Cellulose

- Abundant
- Not food competitive
- "Waste" sources
- Renewable
- Non-petrochemical

Background

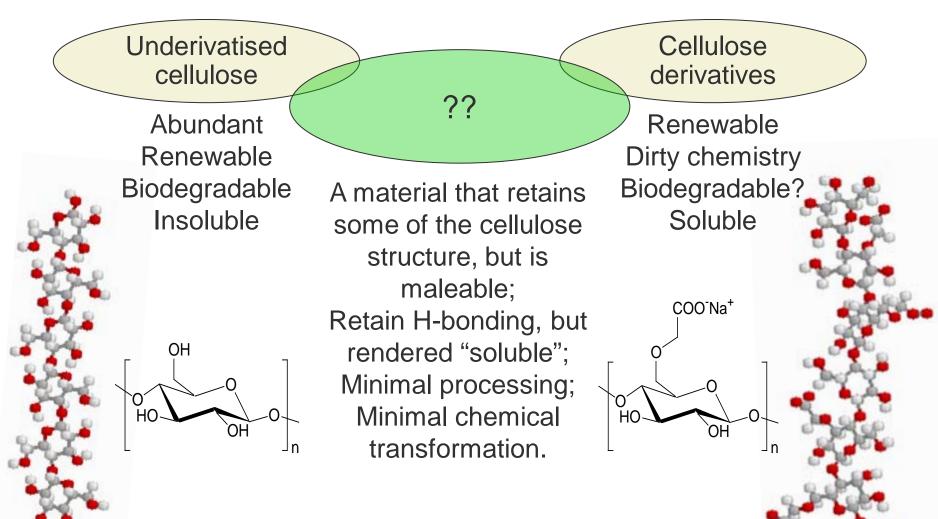
Sustainability Research in the Development of Fast Moving Consumer Goods (SUSRES)

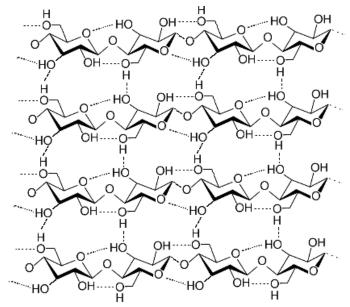
MARIE CURIE ACTIONS Marie Curie Host Fellowships, Transfer of Knowledge (ToK) Development Host Scheme MTKD-CT-2005-029644

Functional, Renewable & Sustainable Hybrid (FR&SH) materials

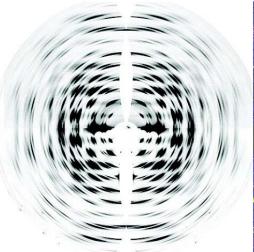
TSB "Sustainable Materials" collaborative R&D project

Centre for Sustainable Chemical Technologies CRODA

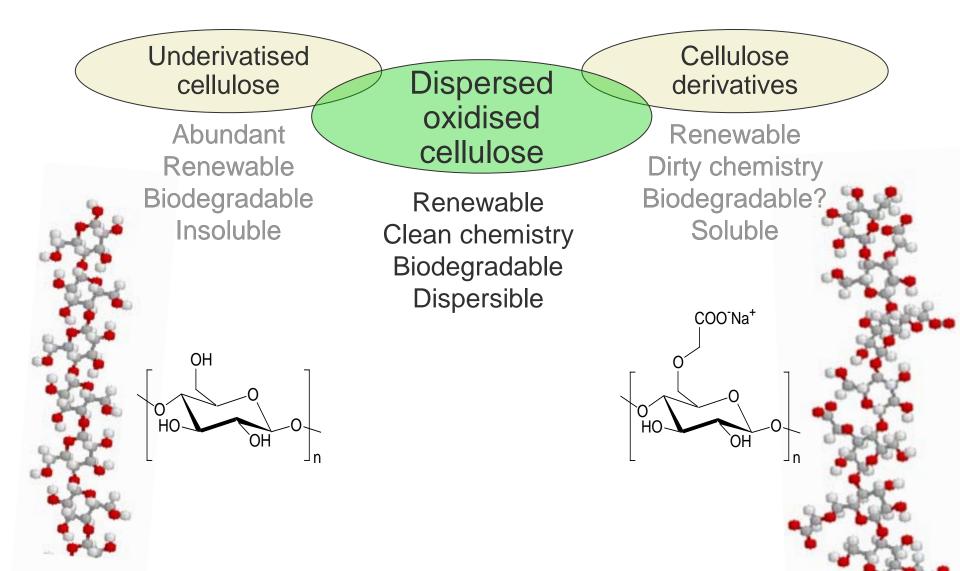



NNFCC building sustainable supply chains

A cellulose based structurant?



Cellulose is insoluble


Tends to form hydrogen bonds

May have crystalline regions

Dispersed fibrils of oxidised cellulose

Precedent

- Fully C(6) oxidised cellulose = glucuronic acid; soluble but tends to be unstable
- Partially C(6) oxidised, dispersed cellulose¹

Stable, viscous, slightly turbid dispersion - shear thinning.¹

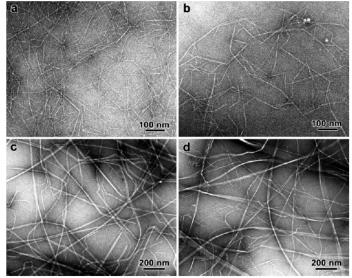
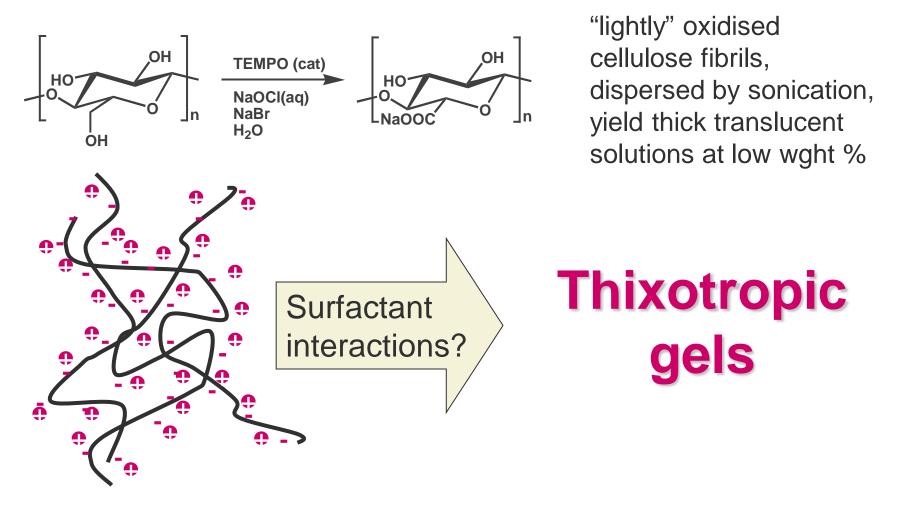


Figure 4. Transmission electron micrographs of cellulose microfibrils disintegrated after TEMPO-mediated oxidation of never-dried samples (a) bleached sulfite wood pulp, (b) cotton, (c) tunicin, and (d) bacterial cellulose. The preparations were negatively stained with uranyl acetate

1. Saito et al., Biomacromol., 2006, 7, 1687.

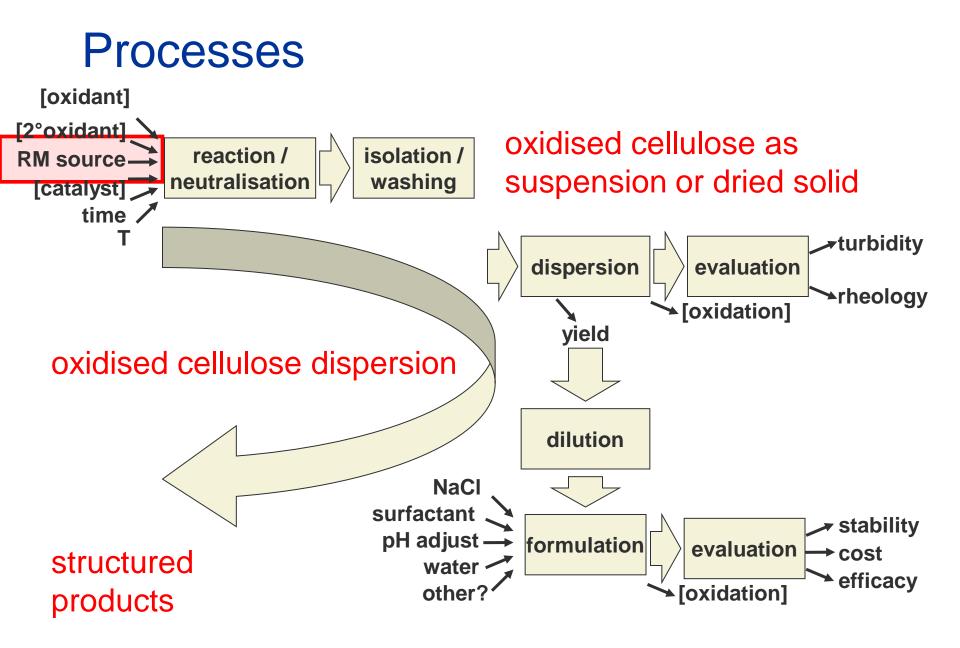
C6 Oxidised cellulose; a KNOWN product


- Hemostat
- Degraded/absorbed
- Bacteriostatic
- Long shelf life
- Used >100M times

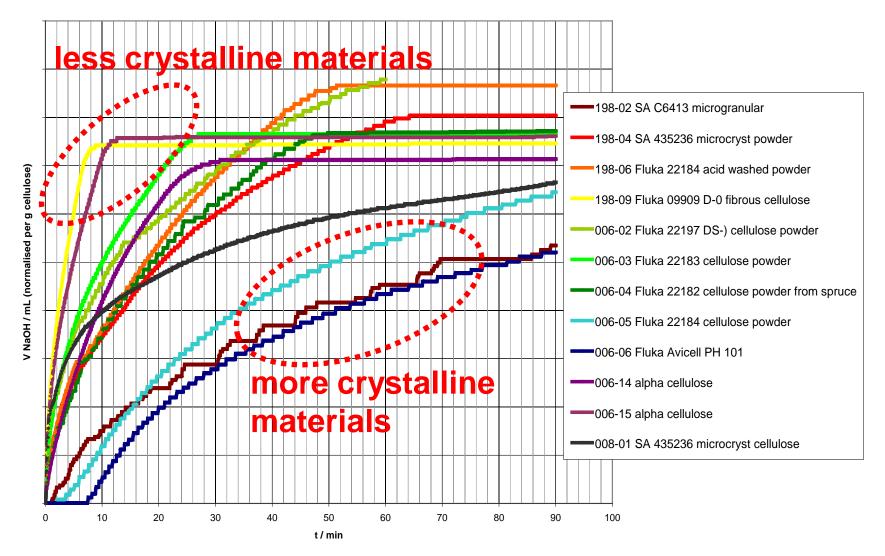
of surgeons for nearly half a century

SURGICEL Absorbable Hemostats have been trusted for more than **45 years** to stop surgical bleeding-with safe, proven convenience. ^{1,2}

Clean processing

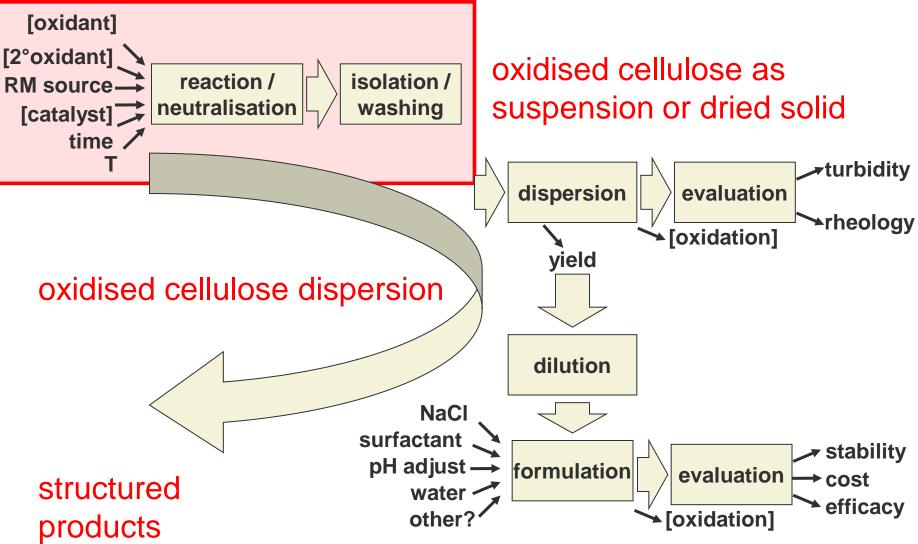


Not dissolved, but well-dispersed fibrils with surface charge; bacterial cellulose X SCMC hybrid


Sample personal care formulations

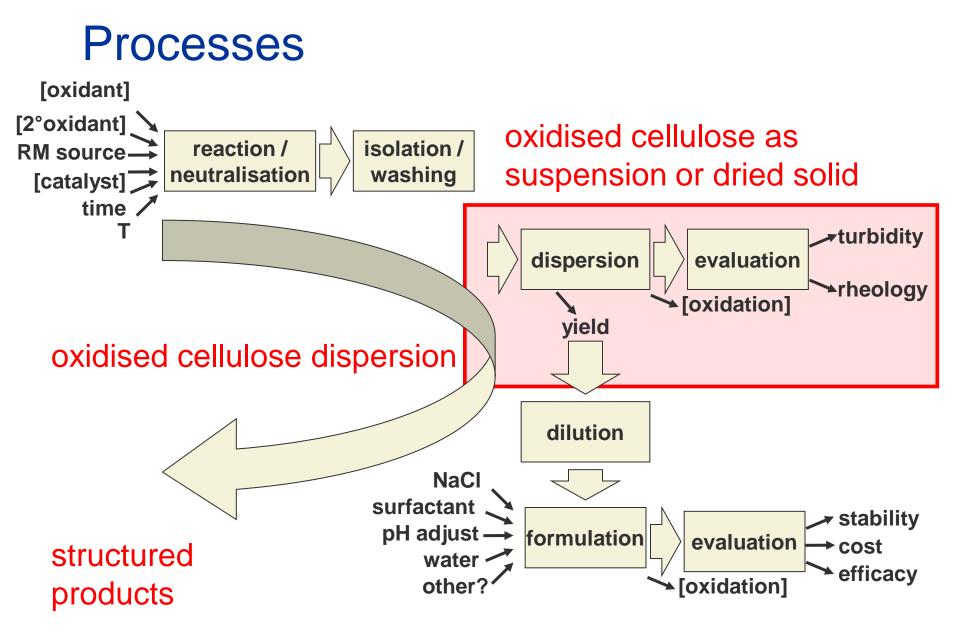
- ~5 % surfactant, ~1 % oxidised cellulose dispersion in water
- Shear thinning, stable gel
- Smooth texture, pleasant feel
- Readily dispersed in water

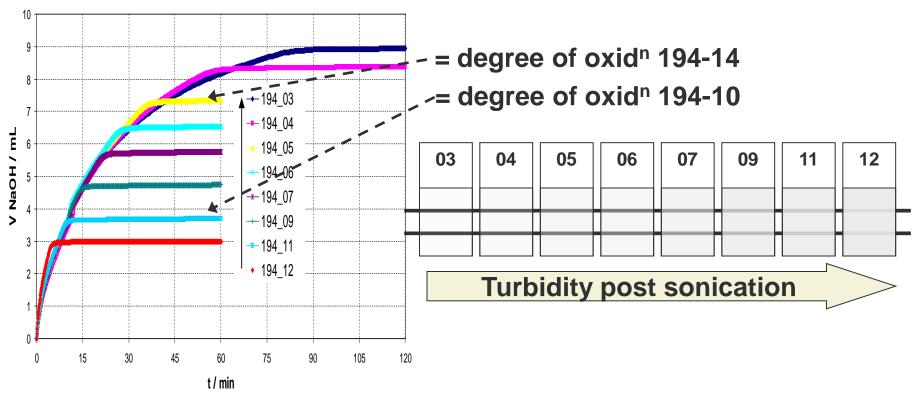
Comparison of cellulose sources


Corrected for LOD of cellulose; normalised; const ratio cellulose:catalyst:oxidant

Raw materials

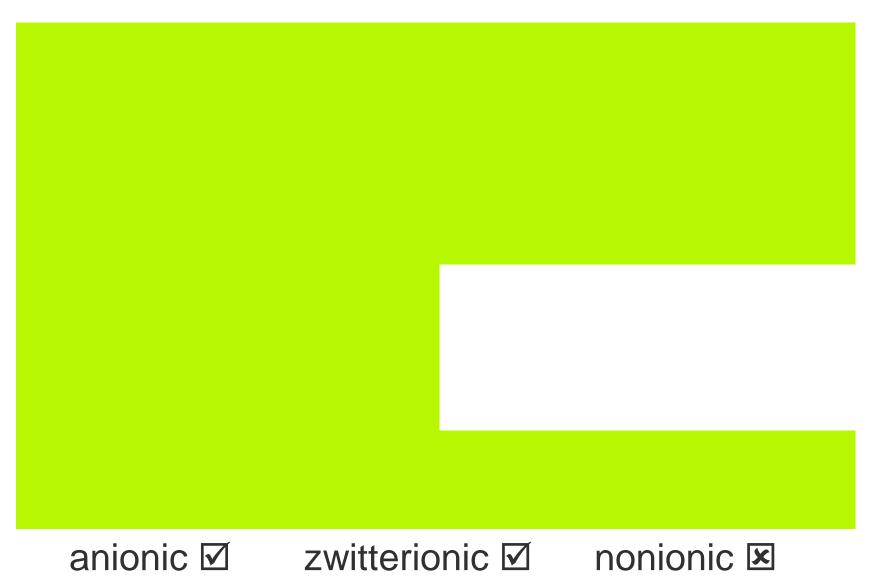
- Least processed provides most rapid oxidation
- Contains greatest α-cellulose content and smallest crystalline fraction
- A bleaching process!


Processes


Mapping reaction requirements

- Titrino modified as multi-reaction station; pH control and tracking
- Variation of reagent, catalyst concentrations, T, etc.
- Direct comparison of reaction rate & extent
- Degree of oxidation
- Record pH / neutralisation quantities in reports

Extent of oxidation


- 194-14 approx twice as oxidised as 194-10
- 194-14 quite turbid post sonication sonicate for extra 10 min @ 30 % power to clear
- Add solid salts and dissolve

Formulation considerations

- Surfactant type / charge?
- Effect of pH?
- Other formulation ingredients?
- Salt concentration?
- Other ions/salts?
 E.g. Ca²⁺ cross-linked gels from polyglucuronic acid (soluble oxidised cellulose) are known

surfactants

Dispe	ersed, oxid	ised ce	ellulose	e; SLES	5 1EO (as use	d in sh	<u>ampoo</u>	tormu	ations); NaCl	; pH ad	justed	<u>to 6 (w</u>	HCI ^(ad))	
		1	2	3	4	5	6	7	8	9	10	11	12		()		
no surfactant (control)	ox cell / %	0.5	1.0	1.5	0.5	1.0	1.5	0.5	1.0	1.5	0.5	1.0	1.5				
	NaCl / %	0.0	0.0	0.0	0.2	0.2	0.2	1.0	1.0	1.0	2.0	2.0	2.0				
	Surf / %†	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
		Free flowing – water-like	Free flowing – water-like	Free flowing	Free flowing some solid? (little)	Free flowing some solid? (little)	Free flowing – some thickening	Free flowing – some thickening	Single mass medium/soft gel	Firm mass of gel – shows syneresis	Single mass – soft gel (some liquid?)	Single mass medium gel	Gelled mass of particles				
no NaCl					13	14	15	16	17	18	19	20	21				
	ox cell / %	See	See	See 3	0.5	1.0	1.5	0.5	1.0	1.5	0.5	1.0	1.5				
	NaCl / %	1	2	3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
	Surf / %†				2.5	2.5	2.5	5.0	5.0	5.0	10.0	10.0	10.0				
aCI					Free-flowing liquid	Free-flowing liquid – smbll qubnt gel sep	Free-flowing liquid some thickening	Free flowing liquid	Gelled mass – soft - flows	Gelled mass – firm – exhibits syneresis	Single mass soft gel*	Gel particles tending to form mass	Concs not accessible				
sur							22	30 (23 rep)	33 (24 rep)		34 (25 rep)	31 (26 rep)	35 (27 rep)		36 (28 rep)	32 (29 rep)	37 (30 rep)
surf and NaCl / 1 ox cell conc	ox cell / %	See	See	See	See	See	1.0	1.0	1.0	See	1.0	1.0	1.0	See	1.0	1.0	1.0
	NaCl / %	2	σı	00	11	14	0.2	1.0	2.0	17	0.2	1.0	2.0	20	0.2	1.0	2.0
	Surf / % [†]						2.5	2.5	2.5		5.0	5.0	5.0		10.0	10.0	10.0
							Single mass soft gel	Gel particles tending to form mass – free flowing	Gel particles tending to form mass – free flowing	0	Gel particles – tending to form mass – free flowing	Gel particles form mass – float when aerated	Gel particles – free flowing		Ge particles form mass – float when aerated	Gel particles – free flowing	Gel mass – pours slowly

Dispersed, oxidised cellulose; SLES 1EO (as used in shampoo formulations); NaCI; pH adjusted to 6 (w HCl_(an))

* breaks up on shaking; † SLES 1 EO supplied as 70 % active % calculated taking this into account

-	perseu, on														(0.0)		
						1			2			3					
	ox cell / %	0.5	1.0	1.5	0.5	1.0	1.5	0.5	1.0	1.5	0.5	1.0	1.5				
ou (NaCI / %	0.0	0.0	0.0	0.2	0.2	0.2	1.0	1.0	1.0	2.0	2.0	2.0				
surfacta (control)	Surf / % [†]	0.0	0.0				0.0		0.0			0.0	0.0				
nt i	•••••	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	te m S	0.0				
ac						de			edi			ingl edi					
surfactant (control)						arde live			err um,			err um sto					
۲ ا						Discarded – in delivery V			ingle mass iedium/soft			iass gel par					
						Discarded – error in delivery V			Single mass medium/soft gel			Single mass medium gel – tends to particles					
						4			5			6					
	ox cell / %	0.5	1.0	1.5	0.5	1.0	1.5		1.0	1.5		1.0	1.5				
	NaCI / %	0.0	0.0	0.0			0.0						0.0				
б	Surf / % [†]	0.0	0.0	0.0	2.5		2.5	5.0		5.0	10.0	10.0	10.0				
no NaCl						Free-flowi v. slightly thickened			Gel to f			Gel par to form mass**					
ñ						e-fli ligh :ker			pai			pai orm ss**					
						owi itly ned			rticl ma			Gel particle to form firm mass**					
						Free-flowing liq – v. slightly thickened			es t ISS*			es t n					
						- bi			Gel particles tend to form mass**			Gel particles tend to form firm mass**					
surf and NaCl conc							7	8	9		10	11	12		13	14	15
f a	ox cell / %	1.0	S C C C C C C	See	See	1.0	1.0	1.0	1.0	S	1.0	1.0	1.0	S	1.0	1.0	1.0
and N	NaCI / %	0.0		e	e 11	0.0	0.2	1.0	2.0	See 4	0.2		2.0	See 5	0.2	1.0	2.0
ی ک	Surf / % [†]	0.0	<u> </u>	\sim		0.0	2.5	2.5	2.5	4	5.0		5.0	Ю	10.0	10.0	10.0
aC	Sull / 70'																
							ing el - hak	ing	Gel part flowing		ingl	Gel pa mass t easily	iel p owi		Gerpa tendir mass	iel p endi	Concs not accessible
							le n flo ing	le n	ng		ng e m	s bu y	oart ng t		ing	s (tr	ssit
× ×							nas ws (Single mass medium/firm	Gel particles flowing		Gel particles tending to for single mass*	icle It br	icle out i		Gerparticles tending to form mass	to fo	ble
/ 1 ox cell							Single mass soft gel – flows on shaking	s n gel	1		Gel particles tending to form single mass**	Gel particles form mass but break up easily	s fro thic		orm	Gel particles tending to form mass (trap air	
∎							oft	<u>e</u>	free-			Gel particles form mass but break up easily	Gel particles free- flowing but thick				

Dispersed, oxidised cellulose; SLES 3EO (as used in concentrated laundry); NaCl pH adjusted to 8 (w HC1_(a0))

* breaks up on shaking; ** convert to free-flowing with gel particles on shaking; ; † SLES 3 EO supplied as 70 % active - % calculated taking this into account

Mechanism of gelation / thickening?

- NaCI OR surfactant yield gels
- Effect appears to be additive (qualitative)
- Gels known with bridging ions e.g. Ca²⁺
- Effect of chaotropes / kosmotropes?

chaotropes	kosmotropes
large, charge diffuse ions	small, charge dense ions
interfere with stabilizing intra-molecular interactions	stabilise/structure water- water interactions

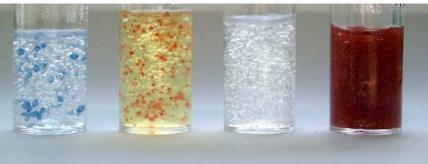
Test NaCI, NaBr, KI, CaCl₂, urea (non-ionic, chaotrope)

Effect of added chao/kosmotropes

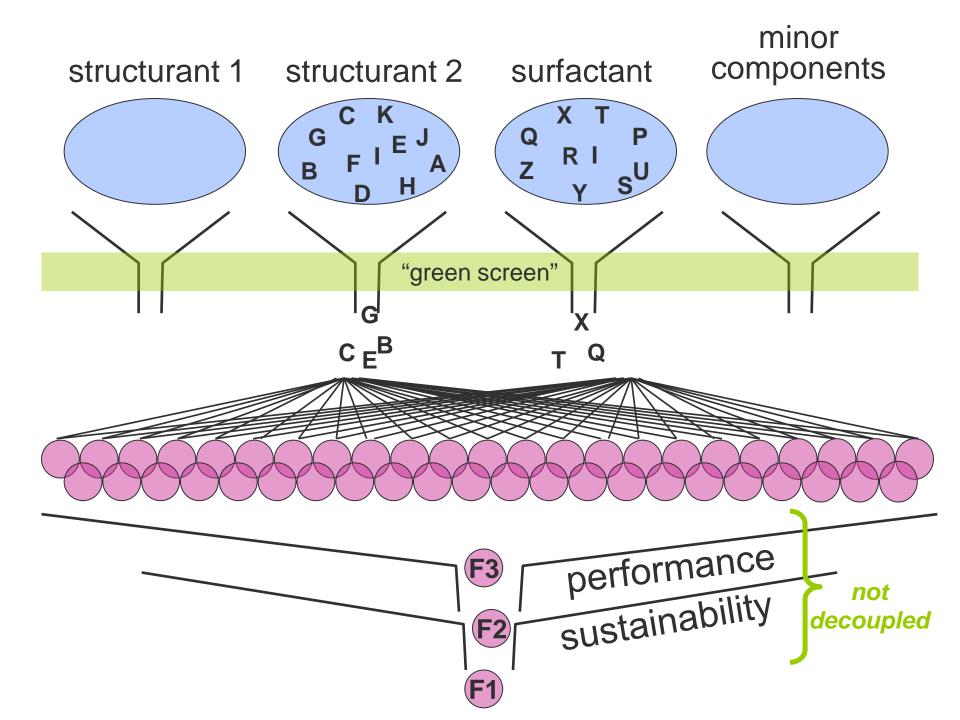
Oxidised cellulose (more oxidised); 1.5 % dispersion in H ₂ O					
Salt/addit.	none	NaCl	NaBr	KI	CaCl ₂
Mass %	-	1.1	2.1	3.5	1.5
Mol %	-	0.020	0.020	0.021	0.013
	Free- flowing	Slightly thickened	Slightly thickened	Slightly thickened	Ppt gel particles

Oxidised cellulose (less oxidised); .6 % dispersion in H ₂ O					
Salt/addit.	urea	NaCl	NaBr	KI	
Mass %	0.9	0.8	1.6	2.3	0.1
Mol %	0.015	0.015	0.015	0.014	0.001
	Free- flowing	gel	gel	gel	Free- flowing

no effect nonionic chaotrope some Ca²⁺ tolerance


Benefits

Green Chemistry	Renewable resource?	Green process?*	Non-hazardous	
Raw material	Cost effective raw material?	Raw material availability? Non-petrochem?	Not food competitive?	
Product	Formulation compatibility?	Product performance?	Customer benefit?	
End of life	Reduced surfactant (and other) content?	Biodegradable?	Reduced environmental tourden?	


* A.E. de Nooy, A.C. Besemer, H. van Bekkum, J.A.P.P. van Dijk, J.A.M. Smit, *Macromolecules*, 1996, **29**, 6541-6547 and numerous later publications from van Bekkum's group

Characteristics of sample formulations

- Suspension of finely divided solids / bubbles
- Stable for many months
- Odourless
- Colourless/white
- Required:

- Challenge testing (no bugs grown in many months)
- closer definition of regions of thickening HT exps with ranges of solids/surfactants/salt
- Structurant specifications: degree of oxidation; RM source (cellulose type) etc.

Sustainability metrics in reformulation

- •For individual components:
 - What to measure?
 - Scarce data availability for R&D materials
 - Comparison of disparate materials from different sources & prepared by different routes

The Green Screen for Safer Chemicals defines four benchmarks on the path to safer chemicals:

- Benchmark 1: Avoid—Chemical of high concern
- Benchmark 2: Use but search for safer substitutes
- Benchmark 3: Use but still opportunity for improvement
- Benchmark 4:
 Prefer—Safer chemical

Sustainability metrics in reformulation

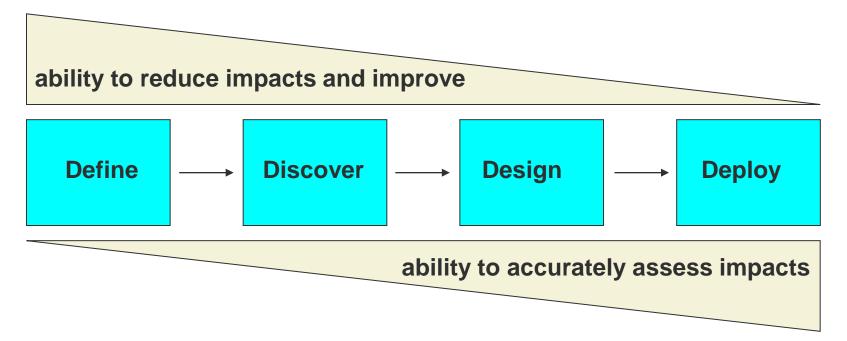
- •For individual components:
 - What to measure?
 - Scarce data availability for R&D materials
 - Comparison of disparate materials from different sources & prepared by different routes

... but a major difficulty is that comparison of individual materials or ingredients does not work for <u>complete reformulation</u> with new ingredients, i.e. <u>not</u> one for one replacement of ingredients. Formulated product vs ingredients

If formulated product should be compared - how to compare formulations that contain completely different ingredients?

Possible methodologies?

- Life Cycle Assessment (LCA):
 - Environmental aspects ONLY
 - Appropriate for final product, too detailed for early development / selection
 - "Unit of Service" concept may be useful
- Software based LCA type analyses
 - e.g. CCaLC
- Streamlined Life Cycle Assesment (SLCA)
 - Developed by Forum for the Future and Natural Step
 - A big picture approach

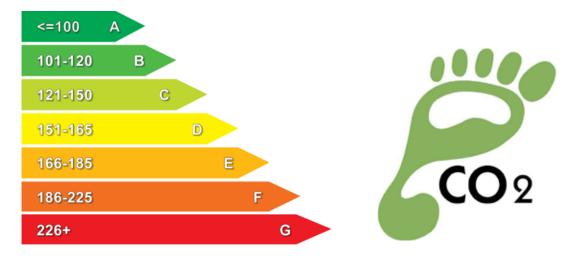

First Layer Questions		System Conditions			
		Virgin Materials from Earth's Crust	Persistant Materials	Degradation of Nature	Working Conditions
	Raw Materials				
ages	Manufacture				
Life Cycle Stages	Packaging & Distribution				
Life C	Use				
	End of Life				

Key					
Rey	Good	Quite Good	Weak	Bad	Don't Know
Answers	All positive	Mostly positive	Mostly negative	All negative	
System Condition	Met	Partly met	Mostly not met	Not met	Can't judge

Does this work for what is **inside** the box?

If "80-90% of environmental impacts are determined at the early design stages" ... (DEFRA/UK Design Council)

... need to start to use environmental impact as a differentiator in early discovery


Cost "per unit structuring"; **f**(function)

- The like for like comparison may be function based
- Bang for buck!
- reenwast Cost per unit function Solution of the second concept can be to environm

Credibility, credibility, credibility

e.g. CO₂ produced per unit structuring

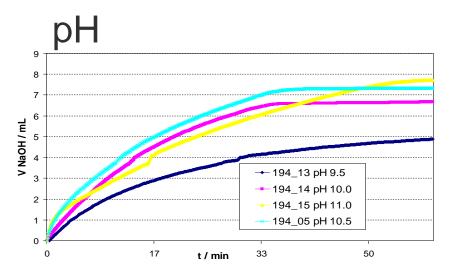
• CO₂ bandings / CO₂ footprint are becoming familiar

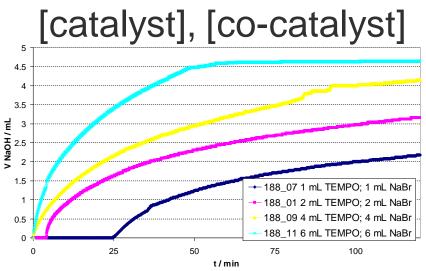
- Numerical
- Allows comparison of disparate structurants ... or even different structuring mechanisms
- Data is available for a range of ingredients: surfactants, structuring polymers etc.

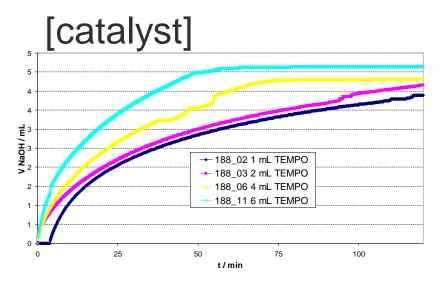
Dispersed oxidised cellulose

Wide application

 Flow characteristics are important in many products for diverse applications

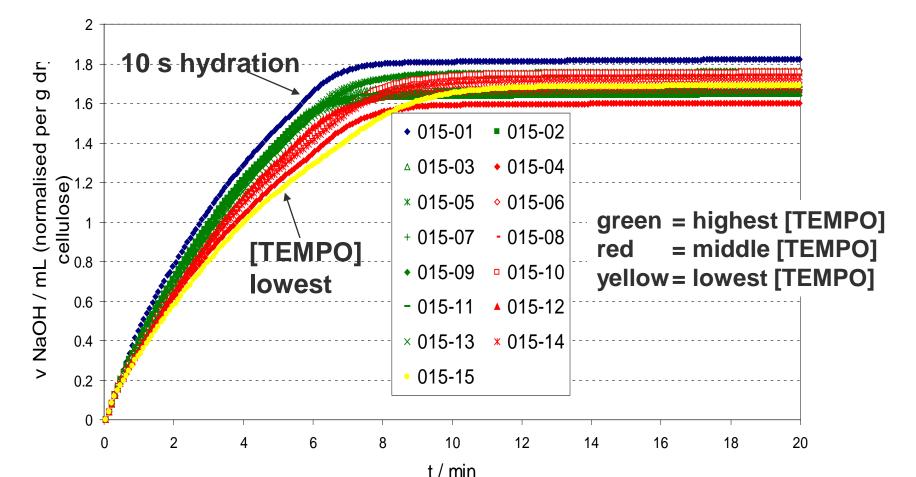



Concluding comments

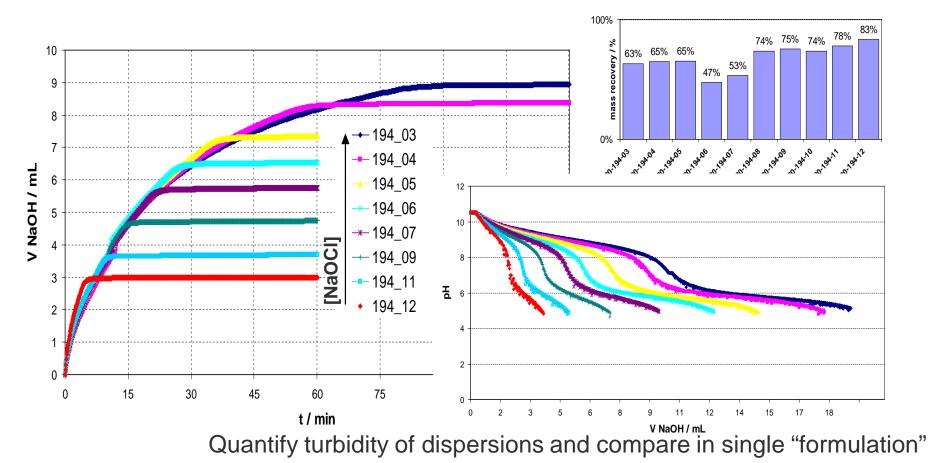

Questions:

- 1. What are the specific purposes of sustainability reporting?
- 2. Who will the outcomes be reported to? (Are there different audiences?)
- 3. What are the boundaries?(Are these different for the different audiences?)
- 4. What functional unit will form the basis for sustainability reporting and comparison?
- 5. Which ingredients or classes of ingredients will be considered?
- 6. Who are the key suppliers and contacts?

Reaction conditions, $T = 25 \ ^{\circ}C$



- Optimum pH = 10.5 (10-11)
- Reducing [TEMPO] & [NaBr] slows rate of conversion more significantly than [TEMPO] alone
- [TEMPO] can be minimised


Reproducibility

Const [NaBr], [NaOCI], pH, T, 300 s hydration time

Mapping degree of oxidation

• Readily followed by NaOH consumption (possib. sources of error include: acid groups on cellulose; other species oxidised; consumption of oxidant by degradation mechanisms not associated with substrate ox.)

